This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzuzle | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) → ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ↔ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) | |
| 2 | simpll | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐵 ∈ ℤ ) | |
| 3 | simpr2 | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐶 ∈ ℤ ) | |
| 4 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐵 ∈ ℝ ) |
| 6 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) → 𝐴 ∈ ℝ ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐴 ∈ ℝ ) |
| 9 | zre | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℝ ) | |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ ) |
| 12 | simplr | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐵 ≤ 𝐴 ) | |
| 13 | simpr3 | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐴 ≤ 𝐶 ) | |
| 14 | 5 8 11 12 13 | letrd | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐵 ≤ 𝐶 ) |
| 15 | eluz2 | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶 ) ) | |
| 16 | 2 3 14 15 | syl3anbrc | ⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 17 | 16 | ex | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 18 | 1 17 | biimtrid | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) → ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |