This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrmineq | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletri3 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 = 𝐴 ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 = 𝐴 ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
| 3 | 2 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 = 𝐴 ) |
| 4 | 3 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 = 𝐴 ) |
| 5 | 4 | ifeq1da | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐵 ≤ 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐵 ) = if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ) |
| 6 | 5 | 3impa | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐵 ) = if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ) |
| 7 | ifid | ⊢ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐵 ) = 𝐵 | |
| 8 | 6 7 | eqtr3di | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) = 𝐵 ) |