This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a section of G , then F is a monomorphism. Proposition 7.35 of Adamek p. 110. A monomorphism that arises from a section is also known as asplit monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectmon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| sectmon.m | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | ||
| sectmon.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| sectmon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| sectmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| sectmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| sectmon.1 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | ||
| Assertion | sectmon | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectmon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | sectmon.m | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | |
| 3 | sectmon.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 4 | sectmon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | sectmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | sectmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | sectmon.1 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 10 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 11 | 1 8 9 10 3 4 5 6 | issect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 12 | 7 11 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 13 | 12 | simp1d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 14 | oveq2 | ⊢ ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) = ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ) ) | |
| 15 | 12 | simp3d | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) ) |
| 18 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
| 19 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 20 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 21 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 22 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 23 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 24 | 12 | simp2d | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 26 | 1 8 9 18 19 20 21 22 23 20 25 | catass | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ) |
| 27 | 1 8 10 18 19 9 20 22 | catlid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑔 ) = 𝑔 ) |
| 28 | 17 26 27 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) = 𝑔 ) |
| 29 | 16 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ℎ ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ℎ ) ) |
| 30 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 31 | 1 8 9 18 19 20 21 30 23 20 25 | catass | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ℎ ) = ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ) ) |
| 32 | 1 8 10 18 19 9 20 30 | catlid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ℎ ) = ℎ ) |
| 33 | 29 31 32 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ) = ℎ ) |
| 34 | 28 33 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) = ( 𝐺 ( 〈 𝑥 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ) ↔ 𝑔 = ℎ ) ) |
| 35 | 14 34 | imbitrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 36 | 35 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 37 | 36 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 38 | 1 8 9 2 4 5 6 | ismon2 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑥 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
| 39 | 13 37 38 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) |