This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a section of G , then G is an epimorphism. Proposition 7.42 of Adamek p. 112. An epimorphism that arises from a section is also known as asplit epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectepi.b | ||
| sectepi.e | |||
| sectepi.s | |||
| sectepi.c | |||
| sectepi.x | |||
| sectepi.y | |||
| sectepi.1 | |||
| Assertion | sectepi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectepi.b | ||
| 2 | sectepi.e | ||
| 3 | sectepi.s | ||
| 4 | sectepi.c | ||
| 5 | sectepi.x | ||
| 6 | sectepi.y | ||
| 7 | sectepi.1 | ||
| 8 | eqid | ||
| 9 | 8 1 | oppcbas | |
| 10 | eqid | ||
| 11 | eqid | ||
| 12 | 8 | oppccat | |
| 13 | 4 12 | syl | |
| 14 | 1 8 4 5 6 3 11 | oppcsect | |
| 15 | 7 14 | mpbird | |
| 16 | 9 10 11 13 5 6 15 | sectmon | |
| 17 | 8 4 10 2 | oppcmon | |
| 18 | 16 17 | eleqtrd |