This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modom | ⊢ ( ∃* 𝑥 𝜑 ↔ { 𝑥 ∣ 𝜑 } ≼ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeu | ⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) | |
| 2 | imor | ⊢ ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∨ ∃! 𝑥 𝜑 ) ) | |
| 3 | abn0 | ⊢ ( { 𝑥 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 ) | |
| 4 | 3 | necon1bbii | ⊢ ( ¬ ∃ 𝑥 𝜑 ↔ { 𝑥 ∣ 𝜑 } = ∅ ) |
| 5 | sdom1 | ⊢ ( { 𝑥 ∣ 𝜑 } ≺ 1o ↔ { 𝑥 ∣ 𝜑 } = ∅ ) | |
| 6 | 4 5 | bitr4i | ⊢ ( ¬ ∃ 𝑥 𝜑 ↔ { 𝑥 ∣ 𝜑 } ≺ 1o ) |
| 7 | euen1 | ⊢ ( ∃! 𝑥 𝜑 ↔ { 𝑥 ∣ 𝜑 } ≈ 1o ) | |
| 8 | 6 7 | orbi12i | ⊢ ( ( ¬ ∃ 𝑥 𝜑 ∨ ∃! 𝑥 𝜑 ) ↔ ( { 𝑥 ∣ 𝜑 } ≺ 1o ∨ { 𝑥 ∣ 𝜑 } ≈ 1o ) ) |
| 9 | brdom2 | ⊢ ( { 𝑥 ∣ 𝜑 } ≼ 1o ↔ ( { 𝑥 ∣ 𝜑 } ≺ 1o ∨ { 𝑥 ∣ 𝜑 } ≈ 1o ) ) | |
| 10 | 8 9 | bitr4i | ⊢ ( ( ¬ ∃ 𝑥 𝜑 ∨ ∃! 𝑥 𝜑 ) ↔ { 𝑥 ∣ 𝜑 } ≼ 1o ) |
| 11 | 1 2 10 | 3bitri | ⊢ ( ∃* 𝑥 𝜑 ↔ { 𝑥 ∣ 𝜑 } ≼ 1o ) |