This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 28-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | ||
| sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | ||
| Assertion | sbthlem9 | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| 2 | sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | |
| 3 | sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 4 | 1 2 3 | sbthlem7 | ⊢ ( ( Fun 𝑓 ∧ Fun ◡ 𝑔 ) → Fun 𝐻 ) |
| 5 | 1 2 3 | sbthlem5 | ⊢ ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴 ) → dom 𝐻 = 𝐴 ) |
| 6 | 5 | adantrl | ⊢ ( ( dom 𝑓 = 𝐴 ∧ ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ) → dom 𝐻 = 𝐴 ) |
| 7 | 4 6 | anim12i | ⊢ ( ( ( Fun 𝑓 ∧ Fun ◡ 𝑔 ) ∧ ( dom 𝑓 = 𝐴 ∧ ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ) ) → ( Fun 𝐻 ∧ dom 𝐻 = 𝐴 ) ) |
| 8 | 7 | an42s | ⊢ ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → ( Fun 𝐻 ∧ dom 𝐻 = 𝐴 ) ) |
| 9 | 8 | adantlr | ⊢ ( ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → ( Fun 𝐻 ∧ dom 𝐻 = 𝐴 ) ) |
| 10 | 9 | adantlr | ⊢ ( ( ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ∧ Fun ◡ 𝑓 ) ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → ( Fun 𝐻 ∧ dom 𝐻 = 𝐴 ) ) |
| 11 | 1 2 3 | sbthlem8 | ⊢ ( ( Fun ◡ 𝑓 ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → Fun ◡ 𝐻 ) |
| 12 | 11 | adantll | ⊢ ( ( ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ∧ Fun ◡ 𝑓 ) ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → Fun ◡ 𝐻 ) |
| 13 | simpr | ⊢ ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) → dom 𝑔 = 𝐵 ) | |
| 14 | 13 | anim1i | ⊢ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) → ( dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴 ) ) |
| 15 | df-rn | ⊢ ran 𝐻 = dom ◡ 𝐻 | |
| 16 | 1 2 3 | sbthlem6 | ⊢ ( ( ran 𝑓 ⊆ 𝐵 ∧ ( ( dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → ran 𝐻 = 𝐵 ) |
| 17 | 15 16 | eqtr3id | ⊢ ( ( ran 𝑓 ⊆ 𝐵 ∧ ( ( dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → dom ◡ 𝐻 = 𝐵 ) |
| 18 | 14 17 | sylanr1 | ⊢ ( ( ran 𝑓 ⊆ 𝐵 ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → dom ◡ 𝐻 = 𝐵 ) |
| 19 | 18 | adantll | ⊢ ( ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → dom ◡ 𝐻 = 𝐵 ) |
| 20 | 19 | adantlr | ⊢ ( ( ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ∧ Fun ◡ 𝑓 ) ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → dom ◡ 𝐻 = 𝐵 ) |
| 21 | 10 12 20 | jca32 | ⊢ ( ( ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ∧ Fun ◡ 𝑓 ) ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → ( ( Fun 𝐻 ∧ dom 𝐻 = 𝐴 ) ∧ ( Fun ◡ 𝐻 ∧ dom ◡ 𝐻 = 𝐵 ) ) ) |
| 22 | df-f1 | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝑓 ) ) | |
| 23 | df-f | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐵 ) ) | |
| 24 | df-fn | ⊢ ( 𝑓 Fn 𝐴 ↔ ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ) | |
| 25 | 24 | anbi1i | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐵 ) ↔ ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ) |
| 26 | 23 25 | bitri | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ) |
| 27 | 26 | anbi1i | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝑓 ) ↔ ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ∧ Fun ◡ 𝑓 ) ) |
| 28 | 22 27 | bitri | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ∧ Fun ◡ 𝑓 ) ) |
| 29 | df-f1 | ⊢ ( 𝑔 : 𝐵 –1-1→ 𝐴 ↔ ( 𝑔 : 𝐵 ⟶ 𝐴 ∧ Fun ◡ 𝑔 ) ) | |
| 30 | df-f | ⊢ ( 𝑔 : 𝐵 ⟶ 𝐴 ↔ ( 𝑔 Fn 𝐵 ∧ ran 𝑔 ⊆ 𝐴 ) ) | |
| 31 | df-fn | ⊢ ( 𝑔 Fn 𝐵 ↔ ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ) | |
| 32 | 31 | anbi1i | ⊢ ( ( 𝑔 Fn 𝐵 ∧ ran 𝑔 ⊆ 𝐴 ) ↔ ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ) |
| 33 | 30 32 | bitri | ⊢ ( 𝑔 : 𝐵 ⟶ 𝐴 ↔ ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ) |
| 34 | 33 | anbi1i | ⊢ ( ( 𝑔 : 𝐵 ⟶ 𝐴 ∧ Fun ◡ 𝑔 ) ↔ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) |
| 35 | 29 34 | bitri | ⊢ ( 𝑔 : 𝐵 –1-1→ 𝐴 ↔ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) |
| 36 | 28 35 | anbi12i | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) ↔ ( ( ( ( Fun 𝑓 ∧ dom 𝑓 = 𝐴 ) ∧ ran 𝑓 ⊆ 𝐵 ) ∧ Fun ◡ 𝑓 ) ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) ) |
| 37 | dff1o4 | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐻 Fn 𝐴 ∧ ◡ 𝐻 Fn 𝐵 ) ) | |
| 38 | df-fn | ⊢ ( 𝐻 Fn 𝐴 ↔ ( Fun 𝐻 ∧ dom 𝐻 = 𝐴 ) ) | |
| 39 | df-fn | ⊢ ( ◡ 𝐻 Fn 𝐵 ↔ ( Fun ◡ 𝐻 ∧ dom ◡ 𝐻 = 𝐵 ) ) | |
| 40 | 38 39 | anbi12i | ⊢ ( ( 𝐻 Fn 𝐴 ∧ ◡ 𝐻 Fn 𝐵 ) ↔ ( ( Fun 𝐻 ∧ dom 𝐻 = 𝐴 ) ∧ ( Fun ◡ 𝐻 ∧ dom ◡ 𝐻 = 𝐵 ) ) ) |
| 41 | 37 40 | bitri | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ ( ( Fun 𝐻 ∧ dom 𝐻 = 𝐴 ) ∧ ( Fun ◡ 𝐻 ∧ dom ◡ 𝐻 = 𝐵 ) ) ) |
| 42 | 21 36 41 | 3imtr4i | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |