This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | ||
| sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | ||
| Assertion | sbthlem8 | ⊢ ( ( Fun ◡ 𝑓 ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → Fun ◡ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| 2 | sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | |
| 3 | sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 4 | funres11 | ⊢ ( Fun ◡ 𝑓 → Fun ◡ ( 𝑓 ↾ ∪ 𝐷 ) ) | |
| 5 | funcnvcnv | ⊢ ( Fun 𝑔 → Fun ◡ ◡ 𝑔 ) | |
| 6 | funres11 | ⊢ ( Fun ◡ ◡ 𝑔 → Fun ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( Fun 𝑔 → Fun ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 8 | 7 | ad3antrrr | ⊢ ( ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) → Fun ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 9 | 4 8 | anim12i | ⊢ ( ( Fun ◡ 𝑓 ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → ( Fun ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∧ Fun ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 10 | df-ima | ⊢ ( 𝑓 “ ∪ 𝐷 ) = ran ( 𝑓 ↾ ∪ 𝐷 ) | |
| 11 | df-rn | ⊢ ran ( 𝑓 ↾ ∪ 𝐷 ) = dom ◡ ( 𝑓 ↾ ∪ 𝐷 ) | |
| 12 | 10 11 | eqtr2i | ⊢ dom ◡ ( 𝑓 ↾ ∪ 𝐷 ) = ( 𝑓 “ ∪ 𝐷 ) |
| 13 | df-ima | ⊢ ( ◡ 𝑔 “ ( 𝐴 ∖ ∪ 𝐷 ) ) = ran ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) | |
| 14 | df-rn | ⊢ ran ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) = dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) | |
| 15 | 13 14 | eqtri | ⊢ ( ◡ 𝑔 “ ( 𝐴 ∖ ∪ 𝐷 ) ) = dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) |
| 16 | 1 2 | sbthlem4 | ⊢ ( ( ( dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) → ( ◡ 𝑔 “ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) |
| 17 | 15 16 | eqtr3id | ⊢ ( ( ( dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) → dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) |
| 18 | ineq12 | ⊢ ( ( dom ◡ ( 𝑓 ↾ ∪ 𝐷 ) = ( 𝑓 “ ∪ 𝐷 ) ∧ dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) → ( dom ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ( ( 𝑓 “ ∪ 𝐷 ) ∩ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) ) | |
| 19 | 12 17 18 | sylancr | ⊢ ( ( ( dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) → ( dom ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ( ( 𝑓 “ ∪ 𝐷 ) ∩ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) ) |
| 20 | disjdif | ⊢ ( ( 𝑓 “ ∪ 𝐷 ) ∩ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) = ∅ | |
| 21 | 19 20 | eqtrdi | ⊢ ( ( ( dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) → ( dom ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ ) |
| 22 | 21 | adantlll | ⊢ ( ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) → ( dom ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ ) |
| 23 | 22 | adantl | ⊢ ( ( Fun ◡ 𝑓 ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → ( dom ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ ) |
| 24 | funun | ⊢ ( ( ( Fun ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∧ Fun ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ∧ ( dom ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ ) → Fun ( ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∪ ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) | |
| 25 | 9 23 24 | syl2anc | ⊢ ( ( Fun ◡ 𝑓 ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → Fun ( ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∪ ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 26 | 3 | cnveqi | ⊢ ◡ 𝐻 = ◡ ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 27 | cnvun | ⊢ ◡ ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ( ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∪ ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 28 | 26 27 | eqtri | ⊢ ◡ 𝐻 = ( ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∪ ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 29 | 28 | funeqi | ⊢ ( Fun ◡ 𝐻 ↔ Fun ( ◡ ( 𝑓 ↾ ∪ 𝐷 ) ∪ ◡ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 30 | 25 29 | sylibr | ⊢ ( ( Fun ◡ 𝑓 ∧ ( ( ( Fun 𝑔 ∧ dom 𝑔 = 𝐵 ) ∧ ran 𝑔 ⊆ 𝐴 ) ∧ Fun ◡ 𝑔 ) ) → Fun ◡ 𝐻 ) |