This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | ||
| sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | ||
| Assertion | sbthlem5 | ⊢ ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴 ) → dom 𝐻 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| 2 | sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | |
| 3 | sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 4 | 3 | dmeqi | ⊢ dom 𝐻 = dom ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 5 | dmun | ⊢ dom ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∪ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 6 | dmres | ⊢ dom ( 𝑓 ↾ ∪ 𝐷 ) = ( ∪ 𝐷 ∩ dom 𝑓 ) | |
| 7 | dmres | ⊢ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ dom ◡ 𝑔 ) | |
| 8 | df-rn | ⊢ ran 𝑔 = dom ◡ 𝑔 | |
| 9 | 8 | eqcomi | ⊢ dom ◡ 𝑔 = ran 𝑔 |
| 10 | 9 | ineq2i | ⊢ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ dom ◡ 𝑔 ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) |
| 11 | 7 10 | eqtri | ⊢ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) |
| 12 | 6 11 | uneq12i | ⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∪ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) |
| 13 | 5 12 | eqtri | ⊢ dom ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) |
| 14 | 4 13 | eqtri | ⊢ dom 𝐻 = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) |
| 15 | 1 2 | sbthlem1 | ⊢ ∪ 𝐷 ⊆ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) ) |
| 16 | difss | ⊢ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) ) ⊆ 𝐴 | |
| 17 | 15 16 | sstri | ⊢ ∪ 𝐷 ⊆ 𝐴 |
| 18 | sseq2 | ⊢ ( dom 𝑓 = 𝐴 → ( ∪ 𝐷 ⊆ dom 𝑓 ↔ ∪ 𝐷 ⊆ 𝐴 ) ) | |
| 19 | 17 18 | mpbiri | ⊢ ( dom 𝑓 = 𝐴 → ∪ 𝐷 ⊆ dom 𝑓 ) |
| 20 | dfss | ⊢ ( ∪ 𝐷 ⊆ dom 𝑓 ↔ ∪ 𝐷 = ( ∪ 𝐷 ∩ dom 𝑓 ) ) | |
| 21 | 19 20 | sylib | ⊢ ( dom 𝑓 = 𝐴 → ∪ 𝐷 = ( ∪ 𝐷 ∩ dom 𝑓 ) ) |
| 22 | 21 | uneq1d | ⊢ ( dom 𝑓 = 𝐴 → ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 23 | 1 2 | sbthlem3 | ⊢ ( ran 𝑔 ⊆ 𝐴 → ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) = ( 𝐴 ∖ ∪ 𝐷 ) ) |
| 24 | imassrn | ⊢ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) ⊆ ran 𝑔 | |
| 25 | 23 24 | eqsstrrdi | ⊢ ( ran 𝑔 ⊆ 𝐴 → ( 𝐴 ∖ ∪ 𝐷 ) ⊆ ran 𝑔 ) |
| 26 | dfss | ⊢ ( ( 𝐴 ∖ ∪ 𝐷 ) ⊆ ran 𝑔 ↔ ( 𝐴 ∖ ∪ 𝐷 ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) | |
| 27 | 25 26 | sylib | ⊢ ( ran 𝑔 ⊆ 𝐴 → ( 𝐴 ∖ ∪ 𝐷 ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) |
| 28 | 27 | uneq2d | ⊢ ( ran 𝑔 ⊆ 𝐴 → ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) ) |
| 29 | 22 28 | sylan9eq | ⊢ ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴 ) → ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) ) |
| 30 | 14 29 | eqtr4id | ⊢ ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴 ) → dom 𝐻 = ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 31 | undif | ⊢ ( ∪ 𝐷 ⊆ 𝐴 ↔ ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = 𝐴 ) | |
| 32 | 17 31 | mpbi | ⊢ ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = 𝐴 |
| 33 | 30 32 | eqtrdi | ⊢ ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴 ) → dom 𝐻 = 𝐴 ) |