This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 28-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | ||
| sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | ||
| sbthlem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | sbthlem10 | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| 2 | sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | |
| 3 | sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 4 | sbthlem.4 | ⊢ 𝐵 ∈ V | |
| 5 | 4 | brdom | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 6 | 1 | brdom | ⊢ ( 𝐵 ≼ 𝐴 ↔ ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐴 ) |
| 7 | 5 6 | anbi12i | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ↔ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐴 ) ) |
| 8 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) ↔ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐴 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ↔ ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) ) |
| 10 | vex | ⊢ 𝑓 ∈ V | |
| 11 | 10 | resex | ⊢ ( 𝑓 ↾ ∪ 𝐷 ) ∈ V |
| 12 | vex | ⊢ 𝑔 ∈ V | |
| 13 | 12 | cnvex | ⊢ ◡ 𝑔 ∈ V |
| 14 | 13 | resex | ⊢ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ∈ V |
| 15 | 11 14 | unex | ⊢ ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ∈ V |
| 16 | 3 15 | eqeltri | ⊢ 𝐻 ∈ V |
| 17 | 1 2 3 | sbthlem9 | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 18 | f1oen3g | ⊢ ( ( 𝐻 ∈ V ∧ 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) | |
| 19 | 16 17 18 | sylancr | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 20 | 19 | exlimivv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 21 | 9 20 | sylbi | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) |