This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | ||
| sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | ||
| Assertion | sbthlem7 | ⊢ ( ( Fun 𝑓 ∧ Fun ◡ 𝑔 ) → Fun 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | ⊢ 𝐴 ∈ V | |
| 2 | sbthlem.2 | ⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } | |
| 3 | sbthlem.3 | ⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 4 | funres | ⊢ ( Fun 𝑓 → Fun ( 𝑓 ↾ ∪ 𝐷 ) ) | |
| 5 | funres | ⊢ ( Fun ◡ 𝑔 → Fun ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 6 | dmres | ⊢ dom ( 𝑓 ↾ ∪ 𝐷 ) = ( ∪ 𝐷 ∩ dom 𝑓 ) | |
| 7 | inss1 | ⊢ ( ∪ 𝐷 ∩ dom 𝑓 ) ⊆ ∪ 𝐷 | |
| 8 | 6 7 | eqsstri | ⊢ dom ( 𝑓 ↾ ∪ 𝐷 ) ⊆ ∪ 𝐷 |
| 9 | ssrin | ⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ⊆ ∪ 𝐷 → ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 11 | dmres | ⊢ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ dom ◡ 𝑔 ) | |
| 12 | inss1 | ⊢ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ dom ◡ 𝑔 ) ⊆ ( 𝐴 ∖ ∪ 𝐷 ) | |
| 13 | 11 12 | eqsstri | ⊢ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ⊆ ( 𝐴 ∖ ∪ 𝐷 ) |
| 14 | sslin | ⊢ ( dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ⊆ ( 𝐴 ∖ ∪ 𝐷 ) → ( ∪ 𝐷 ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ ( 𝐴 ∖ ∪ 𝐷 ) ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( ∪ 𝐷 ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ ( 𝐴 ∖ ∪ 𝐷 ) ) |
| 16 | 10 15 | sstri | ⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ ( 𝐴 ∖ ∪ 𝐷 ) ) |
| 17 | disjdif | ⊢ ( ∪ 𝐷 ∩ ( 𝐴 ∖ ∪ 𝐷 ) ) = ∅ | |
| 18 | 16 17 | sseqtri | ⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ∅ |
| 19 | ss0 | ⊢ ( ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ∅ → ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ ) | |
| 20 | 18 19 | ax-mp | ⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ |
| 21 | funun | ⊢ ( ( ( Fun ( 𝑓 ↾ ∪ 𝐷 ) ∧ Fun ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ∧ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ ) → Fun ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) | |
| 22 | 20 21 | mpan2 | ⊢ ( ( Fun ( 𝑓 ↾ ∪ 𝐷 ) ∧ Fun ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) → Fun ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 23 | 4 5 22 | syl2an | ⊢ ( ( Fun 𝑓 ∧ Fun ◡ 𝑔 ) → Fun ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 24 | 3 | funeqi | ⊢ ( Fun 𝐻 ↔ Fun ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 25 | 23 24 | sylibr | ⊢ ( ( Fun 𝑓 ∧ Fun ◡ 𝑔 ) → Fun 𝐻 ) |