This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 28-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | |- A e. _V |
|
| sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
||
| sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
||
| Assertion | sbthlem9 | |- ( ( f : A -1-1-> B /\ g : B -1-1-> A ) -> H : A -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | |- A e. _V |
|
| 2 | sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
|
| 3 | sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
|
| 4 | 1 2 3 | sbthlem7 | |- ( ( Fun f /\ Fun `' g ) -> Fun H ) |
| 5 | 1 2 3 | sbthlem5 | |- ( ( dom f = A /\ ran g C_ A ) -> dom H = A ) |
| 6 | 5 | adantrl | |- ( ( dom f = A /\ ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) ) -> dom H = A ) |
| 7 | 4 6 | anim12i | |- ( ( ( Fun f /\ Fun `' g ) /\ ( dom f = A /\ ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) ) ) -> ( Fun H /\ dom H = A ) ) |
| 8 | 7 | an42s | |- ( ( ( Fun f /\ dom f = A ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( Fun H /\ dom H = A ) ) |
| 9 | 8 | adantlr | |- ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( Fun H /\ dom H = A ) ) |
| 10 | 9 | adantlr | |- ( ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( Fun H /\ dom H = A ) ) |
| 11 | 1 2 3 | sbthlem8 | |- ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> Fun `' H ) |
| 12 | 11 | adantll | |- ( ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> Fun `' H ) |
| 13 | simpr | |- ( ( Fun g /\ dom g = B ) -> dom g = B ) |
|
| 14 | 13 | anim1i | |- ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) -> ( dom g = B /\ ran g C_ A ) ) |
| 15 | df-rn | |- ran H = dom `' H |
|
| 16 | 1 2 3 | sbthlem6 | |- ( ( ran f C_ B /\ ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) ) -> ran H = B ) |
| 17 | 15 16 | eqtr3id | |- ( ( ran f C_ B /\ ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) ) -> dom `' H = B ) |
| 18 | 14 17 | sylanr1 | |- ( ( ran f C_ B /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> dom `' H = B ) |
| 19 | 18 | adantll | |- ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> dom `' H = B ) |
| 20 | 19 | adantlr | |- ( ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> dom `' H = B ) |
| 21 | 10 12 20 | jca32 | |- ( ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( ( Fun H /\ dom H = A ) /\ ( Fun `' H /\ dom `' H = B ) ) ) |
| 22 | df-f1 | |- ( f : A -1-1-> B <-> ( f : A --> B /\ Fun `' f ) ) |
|
| 23 | df-f | |- ( f : A --> B <-> ( f Fn A /\ ran f C_ B ) ) |
|
| 24 | df-fn | |- ( f Fn A <-> ( Fun f /\ dom f = A ) ) |
|
| 25 | 24 | anbi1i | |- ( ( f Fn A /\ ran f C_ B ) <-> ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) ) |
| 26 | 23 25 | bitri | |- ( f : A --> B <-> ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) ) |
| 27 | 26 | anbi1i | |- ( ( f : A --> B /\ Fun `' f ) <-> ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) ) |
| 28 | 22 27 | bitri | |- ( f : A -1-1-> B <-> ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) ) |
| 29 | df-f1 | |- ( g : B -1-1-> A <-> ( g : B --> A /\ Fun `' g ) ) |
|
| 30 | df-f | |- ( g : B --> A <-> ( g Fn B /\ ran g C_ A ) ) |
|
| 31 | df-fn | |- ( g Fn B <-> ( Fun g /\ dom g = B ) ) |
|
| 32 | 31 | anbi1i | |- ( ( g Fn B /\ ran g C_ A ) <-> ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) ) |
| 33 | 30 32 | bitri | |- ( g : B --> A <-> ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) ) |
| 34 | 33 | anbi1i | |- ( ( g : B --> A /\ Fun `' g ) <-> ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) |
| 35 | 29 34 | bitri | |- ( g : B -1-1-> A <-> ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) |
| 36 | 28 35 | anbi12i | |- ( ( f : A -1-1-> B /\ g : B -1-1-> A ) <-> ( ( ( ( Fun f /\ dom f = A ) /\ ran f C_ B ) /\ Fun `' f ) /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) ) |
| 37 | dff1o4 | |- ( H : A -1-1-onto-> B <-> ( H Fn A /\ `' H Fn B ) ) |
|
| 38 | df-fn | |- ( H Fn A <-> ( Fun H /\ dom H = A ) ) |
|
| 39 | df-fn | |- ( `' H Fn B <-> ( Fun `' H /\ dom `' H = B ) ) |
|
| 40 | 38 39 | anbi12i | |- ( ( H Fn A /\ `' H Fn B ) <-> ( ( Fun H /\ dom H = A ) /\ ( Fun `' H /\ dom `' H = B ) ) ) |
| 41 | 37 40 | bitri | |- ( H : A -1-1-onto-> B <-> ( ( Fun H /\ dom H = A ) /\ ( Fun `' H /\ dom `' H = B ) ) ) |
| 42 | 21 36 41 | 3imtr4i | |- ( ( f : A -1-1-> B /\ g : B -1-1-> A ) -> H : A -1-1-onto-> B ) |