This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcfung | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Fun 𝐹 ↔ Fun ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcan | ⊢ ( [ 𝐴 / 𝑥 ] ( Rel 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ↔ ( [ 𝐴 / 𝑥 ] Rel 𝐹 ∧ [ 𝐴 / 𝑥 ] ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) | |
| 2 | sbcrel | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Rel 𝐹 ↔ Rel ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) | |
| 3 | sbcal | ⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑤 [ 𝐴 / 𝑥 ] ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) | |
| 4 | sbcex2 | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) | |
| 5 | sbcal | ⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) | |
| 6 | sbcimg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑤 𝐹 𝑧 → [ 𝐴 / 𝑥 ] 𝑧 = 𝑦 ) ) ) | |
| 7 | sbcbr123 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑤 𝐹 𝑧 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ) | |
| 8 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑤 = 𝑤 ) | |
| 9 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑧 = 𝑧 ) | |
| 10 | 8 9 | breq12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ↔ 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 ) ) |
| 11 | 7 10 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑤 𝐹 𝑧 ↔ 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 ) ) |
| 12 | sbcg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 = 𝑦 ↔ 𝑧 = 𝑦 ) ) | |
| 13 | 11 12 | imbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑤 𝐹 𝑧 → [ 𝐴 / 𝑥 ] 𝑧 = 𝑦 ) ↔ ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 14 | 6 13 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 15 | 14 | albidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 16 | 5 15 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 17 | 16 | exbidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑦 [ 𝐴 / 𝑥 ] ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 18 | 4 17 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 19 | 18 | albidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑤 [ 𝐴 / 𝑥 ] ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 20 | 3 19 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 21 | 2 20 | anbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] Rel 𝐹 ∧ [ 𝐴 / 𝑥 ] ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ↔ ( Rel ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) ) |
| 22 | 1 21 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( Rel 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ↔ ( Rel ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) ) |
| 23 | dffun3 | ⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) | |
| 24 | 23 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] Fun 𝐹 ↔ [ 𝐴 / 𝑥 ] ( Rel 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
| 25 | dffun3 | ⊢ ( Fun ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↔ ( Rel ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) | |
| 26 | 22 24 25 | 3bitr4g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Fun 𝐹 ↔ Fun ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |