This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcrel | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Rel 𝑅 ↔ Rel ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcssg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑅 ⊆ ( V × V ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ⦋ 𝐴 / 𝑥 ⦌ ( V × V ) ) ) | |
| 2 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( V × V ) = ( V × V ) ) | |
| 3 | 2 | sseq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ⦋ 𝐴 / 𝑥 ⦌ ( V × V ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ( V × V ) ) ) |
| 4 | 1 3 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑅 ⊆ ( V × V ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ( V × V ) ) ) |
| 5 | df-rel | ⊢ ( Rel 𝑅 ↔ 𝑅 ⊆ ( V × V ) ) | |
| 6 | 5 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] Rel 𝑅 ↔ [ 𝐴 / 𝑥 ] 𝑅 ⊆ ( V × V ) ) |
| 7 | df-rel | ⊢ ( Rel ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ( V × V ) ) | |
| 8 | 4 6 7 | 3bitr4g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Rel 𝑅 ↔ Rel ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) |