This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funeu | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ∃! 𝑦 𝐴 𝐹 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | ⊢ ( Fun 𝐹 → Rel 𝐹 ) | |
| 2 | releldm | ⊢ ( ( Rel 𝐹 ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
| 4 | eldmg | ⊢ ( 𝐴 ∈ dom 𝐹 → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑦 𝐴 𝐹 𝑦 ) ) | |
| 5 | 4 | ibi | ⊢ ( 𝐴 ∈ dom 𝐹 → ∃ 𝑦 𝐴 𝐹 𝑦 ) |
| 6 | 3 5 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ∃ 𝑦 𝐴 𝐹 𝑦 ) |
| 7 | funmo | ⊢ ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 ) | |
| 8 | 7 | adantr | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ∃* 𝑦 𝐴 𝐹 𝑦 ) |
| 9 | moeu | ⊢ ( ∃* 𝑦 𝐴 𝐹 𝑦 ↔ ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) ) | |
| 10 | 8 9 | sylib | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
| 11 | 6 10 | mpd | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ∃! 𝑦 𝐴 𝐹 𝑦 ) |