This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005) (Revised by NM, 22-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcbr123 | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 → 𝐴 ∈ V ) | |
| 2 | br0 | ⊢ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 | |
| 3 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝑅 = ∅ ) | |
| 4 | 3 | breqd | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 5 | 2 4 | mtbiri | ⊢ ( ¬ 𝐴 ∈ V → ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 6 | 5 | con4i | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝐴 ∈ V ) |
| 7 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝐵 𝑅 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 ) ) | |
| 8 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
| 9 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝑅 = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) | |
| 10 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 11 | 8 9 10 | breq123d | ⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 13 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 | |
| 14 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 | |
| 15 | 12 13 14 | nfbr | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
| 16 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 17 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝑅 = ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) | |
| 18 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) | |
| 19 | 16 17 18 | breq123d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 𝑅 𝐶 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 20 | 15 19 | sbiev | ⊢ ( [ 𝑦 / 𝑥 ] 𝐵 𝑅 𝐶 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 21 | 7 11 20 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 22 | 1 6 21 | pm5.21nii | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |