This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The satisfaction predicate as function over wff codes of height ( N + 1 ) , expressed by the minimally necessary satisfaction predicates as function over wff codes of height N . (Contributed by AV, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | satfvsucsuc.s | ⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) | |
| satfvsucsuc.a | ⊢ 𝐴 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) | ||
| satfvsucsuc.b | ⊢ 𝐵 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } | ||
| Assertion | satfvsucsuc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( 𝑆 ‘ suc suc 𝑁 ) = ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfvsucsuc.s | ⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) | |
| 2 | satfvsucsuc.a | ⊢ 𝐴 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) | |
| 3 | satfvsucsuc.b | ⊢ 𝐵 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } | |
| 4 | peano2 | ⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ ω ) | |
| 5 | 1 | satfvsuc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ suc 𝑁 ∈ ω ) → ( 𝑆 ‘ suc suc 𝑁 ) = ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 6 | 4 5 | syl3an3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( 𝑆 ‘ suc suc 𝑁 ) = ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 7 | orc | ⊢ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) | |
| 8 | 7 | a1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 9 | 2 | eqeq2i | ⊢ ( 𝑦 = 𝐴 ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) |
| 10 | 9 | anbi2i | ⊢ ( ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ↔ ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 11 | 10 | rexbii | ⊢ ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ↔ ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 12 | 3 | eqeq2i | ⊢ ( 𝑦 = 𝐵 ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) |
| 13 | 12 | anbi2i | ⊢ ( ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) |
| 14 | 13 | rexbii | ⊢ ( ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) |
| 15 | 11 14 | orbi12i | ⊢ ( ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) |
| 16 | 15 | rexbii | ⊢ ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) |
| 17 | 16 | bicomi | ⊢ ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) |
| 18 | 3simpa | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) | |
| 19 | 4 | ancri | ⊢ ( 𝑁 ∈ ω → ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) |
| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) |
| 21 | 18 20 | jca | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) ) |
| 22 | sssucid | ⊢ 𝑁 ⊆ suc 𝑁 | |
| 23 | 22 | a1i | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → 𝑁 ⊆ suc 𝑁 ) |
| 24 | 1 | satfsschain | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) → ( 𝑁 ⊆ suc 𝑁 → ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) ∧ 𝑁 ⊆ suc 𝑁 ) → ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) ) |
| 26 | 21 23 25 | syl2an2r | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) ) |
| 27 | undif | ⊢ ( ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) ↔ ( ( 𝑆 ‘ 𝑁 ) ∪ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) = ( 𝑆 ‘ suc 𝑁 ) ) | |
| 28 | 26 27 | sylib | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝑆 ‘ 𝑁 ) ∪ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) = ( 𝑆 ‘ suc 𝑁 ) ) |
| 29 | 28 | eqcomd | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑆 ‘ suc 𝑁 ) = ( ( 𝑆 ‘ 𝑁 ) ∪ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ) |
| 30 | 29 | rexeqdv | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ∃ 𝑢 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) |
| 31 | rexun | ⊢ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) | |
| 32 | 30 31 | bitrdi | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) ) |
| 33 | 17 32 | bitrid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) ) |
| 34 | r19.43 | ⊢ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) | |
| 35 | 22 | a1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → 𝑁 ⊆ suc 𝑁 ) |
| 36 | 21 35 | jca | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) ∧ 𝑁 ⊆ suc 𝑁 ) ) |
| 37 | 36 25 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) ) |
| 39 | 38 27 | sylib | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝑆 ‘ 𝑁 ) ∪ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) = ( 𝑆 ‘ suc 𝑁 ) ) |
| 40 | 39 | eqcomd | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑆 ‘ suc 𝑁 ) = ( ( 𝑆 ‘ 𝑁 ) ∪ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ) |
| 41 | 40 | rexeqdv | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ↔ ∃ 𝑣 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) |
| 42 | rexun | ⊢ ( ∃ 𝑣 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ↔ ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) | |
| 43 | 41 42 | bitrdi | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ↔ ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) |
| 44 | 43 | rexbidv | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) |
| 45 | 44 | orbi1d | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) |
| 46 | r19.43 | ⊢ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) | |
| 47 | 46 | orbi1i | ⊢ ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) |
| 48 | or32 | ⊢ ( ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) | |
| 49 | r19.43 | ⊢ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) | |
| 50 | 49 | bicomi | ⊢ ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) |
| 51 | 50 | orbi1i | ⊢ ( ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) |
| 52 | 48 51 | bitri | ⊢ ( ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) |
| 53 | 47 52 | bitri | ⊢ ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) |
| 54 | 45 53 | bitrdi | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) |
| 55 | 34 54 | bitrid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) |
| 56 | animorr | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) | |
| 57 | 1 | satfvsuc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( 𝑆 ‘ suc 𝑁 ) = ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 58 | 57 | eleq2d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ↔ 𝑠 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ↔ 𝑠 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) ) |
| 60 | eleq1 | ⊢ ( 𝑠 = 〈 𝑥 , 𝑦 〉 → ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) ) | |
| 61 | 60 | adantl | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) ) |
| 62 | elun | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) | |
| 63 | opabidw | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) | |
| 64 | 63 | orbi2i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) |
| 65 | 62 64 | bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) |
| 66 | 61 65 | bitrdi | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) ) |
| 67 | 59 66 | bitrd | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) ) |
| 68 | 2 | eqcomi | ⊢ ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) = 𝐴 |
| 69 | 68 | eqeq2i | ⊢ ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ↔ 𝑦 = 𝐴 ) |
| 70 | 69 | anbi2i | ⊢ ( ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ↔ ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) |
| 71 | 70 | rexbii | ⊢ ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ↔ ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) |
| 72 | 3 | eqcomi | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } = 𝐵 |
| 73 | 72 | eqeq2i | ⊢ ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ↔ 𝑦 = 𝐵 ) |
| 74 | 73 | anbi2i | ⊢ ( ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ↔ ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) |
| 75 | 74 | rexbii | ⊢ ( ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ↔ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) |
| 76 | 71 75 | orbi12i | ⊢ ( ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ↔ ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) |
| 77 | 76 | rexbii | ⊢ ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) |
| 78 | 77 | a1i | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) |
| 79 | 78 | orbi2d | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) ) |
| 80 | 67 79 | bitrd | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) ) |
| 81 | 80 | adantr | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) ) |
| 82 | 56 81 | mpbird | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) → 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ) |
| 83 | 82 | orcd | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) |
| 84 | 83 | ex | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 85 | simplr | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) → 𝑠 = 〈 𝑥 , 𝑦 〉 ) | |
| 86 | animorr | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) | |
| 87 | 85 86 | jca | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) → ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) |
| 88 | 87 | olcd | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) |
| 89 | 88 | ex | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 90 | 84 89 | jaod | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 91 | 55 90 | sylbid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 92 | simplr | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) → 𝑠 = 〈 𝑥 , 𝑦 〉 ) | |
| 93 | orc | ⊢ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) | |
| 94 | 93 | adantl | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) |
| 95 | 92 94 | jca | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) → ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) |
| 96 | 95 | olcd | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) ∧ ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) |
| 97 | 96 | ex | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 98 | 91 97 | jaod | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 99 | 33 98 | sylbid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ 𝑠 = 〈 𝑥 , 𝑦 〉 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 100 | 99 | expimpd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 101 | 100 | 2eximdv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) → ∃ 𝑥 ∃ 𝑦 ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 102 | 19.45v | ⊢ ( ∃ 𝑦 ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) | |
| 103 | 102 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ↔ ∃ 𝑥 ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) |
| 104 | 19.45v | ⊢ ( ∃ 𝑥 ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) | |
| 105 | 103 104 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) |
| 106 | 101 105 | imbitrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 107 | 8 106 | jaod | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 108 | difss | ⊢ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ⊆ ( 𝑆 ‘ suc 𝑁 ) | |
| 109 | ssrexv | ⊢ ( ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ⊆ ( 𝑆 ‘ suc 𝑁 ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) | |
| 110 | 108 109 | ax-mp | ⊢ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) |
| 111 | 110 | a1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ) ) |
| 112 | 111 16 | imbitrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) |
| 113 | ssrexv | ⊢ ( ( 𝑆 ‘ 𝑁 ) ⊆ ( 𝑆 ‘ suc 𝑁 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) | |
| 114 | 37 113 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) |
| 115 | 10 | 2rexbii | ⊢ ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 116 | 114 115 | imbitrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) ) |
| 117 | 116 | imp | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 118 | ssrexv | ⊢ ( ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ⊆ ( 𝑆 ‘ suc 𝑁 ) → ( ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) → ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) ) | |
| 119 | 108 118 | ax-mp | ⊢ ( ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) → ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 120 | 119 | reximi | ⊢ ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 121 | 117 120 | syl | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 122 | 121 | orcd | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) |
| 123 | 122 | ex | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) |
| 124 | r19.43 | ⊢ ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) | |
| 125 | 123 124 | imbitrrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) |
| 126 | 112 125 | jaod | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) |
| 127 | 126 | anim2d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) → ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) ) |
| 128 | 127 | 2eximdv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) → ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) ) |
| 129 | 128 | orim2d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) → ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) ) ) |
| 130 | 107 129 | impbid | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) ) |
| 131 | elun | ⊢ ( 𝑠 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ 𝑠 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) | |
| 132 | elopab | ⊢ ( 𝑠 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) | |
| 133 | 132 | orbi2i | ⊢ ( ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ 𝑠 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) ) |
| 134 | 131 133 | bitri | ⊢ ( 𝑠 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ) ) ) |
| 135 | elun | ⊢ ( 𝑠 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ 𝑠 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) ) | |
| 136 | elopab | ⊢ ( 𝑠 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) | |
| 137 | 136 | orbi2i | ⊢ ( ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ 𝑠 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) |
| 138 | 135 137 | bitri | ⊢ ( 𝑠 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) ↔ ( 𝑠 ∈ ( 𝑆 ‘ suc 𝑁 ) ∨ ∃ 𝑥 ∃ 𝑦 ( 𝑠 = 〈 𝑥 , 𝑦 〉 ∧ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) ) ) ) |
| 139 | 130 134 138 | 3bitr4g | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( 𝑠 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ 𝑠 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) ) ) |
| 140 | 139 | eqrdv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) = ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) ) |
| 141 | 6 140 | eqtrd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( 𝑆 ‘ suc suc 𝑁 ) = ( ( 𝑆 ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = 𝐵 ) ) ∨ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( 𝑆 ‘ suc 𝑁 ) ∖ ( 𝑆 ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = 𝐴 ) ) } ) ) |