This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Euclidean metric. Compare with rrnval . (Contributed by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| rrxmval.d | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | ||
| Assertion | rrxmfval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| 2 | rrxmval.d | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 3 | eqid | ⊢ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) | |
| 4 | fvex | ⊢ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ∈ V | |
| 5 | 3 4 | fnmpoi | ⊢ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) Fn ( ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) × ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 6 | eqid | ⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 8 | 6 7 | rrxds | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 9 | 2 8 | eqtr4id | ⊢ ( 𝐼 ∈ 𝑉 → 𝐷 = ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) |
| 10 | 6 7 | rrxbase | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 11 | 1 10 | eqtr4id | ⊢ ( 𝐼 ∈ 𝑉 → 𝑋 = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 12 | 11 | sqxpeqd | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑋 × 𝑋 ) = ( ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) × ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
| 13 | 9 12 | fneq12d | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐷 Fn ( 𝑋 × 𝑋 ) ↔ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) Fn ( ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) × ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) ) |
| 14 | 5 13 | mpbiri | ⊢ ( 𝐼 ∈ 𝑉 → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
| 15 | fnov | ⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) ↔ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( 𝑓 𝐷 𝑔 ) ) ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝐼 ∈ 𝑉 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( 𝑓 𝐷 𝑔 ) ) ) |
| 17 | 1 2 | rrxmval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑓 𝐷 𝑔 ) = ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 18 | 17 | mpoeq3dva | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( 𝑓 𝐷 𝑔 ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 19 | 16 18 | eqtrd | ⊢ ( 𝐼 ∈ 𝑉 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ ( ( 𝑓 supp 0 ) ∪ ( 𝑔 supp 0 ) ) ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |