This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| Assertion | rrnval | ⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnval.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| 2 | oveq2 | ⊢ ( 𝑖 = 𝐼 → ( ℝ ↑m 𝑖 ) = ( ℝ ↑m 𝐼 ) ) | |
| 3 | 2 1 | eqtr4di | ⊢ ( 𝑖 = 𝐼 → ( ℝ ↑m 𝑖 ) = 𝑋 ) |
| 4 | sumeq1 | ⊢ ( 𝑖 = 𝐼 → Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝑖 = 𝐼 → ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 6 | 3 3 5 | mpoeq123dv | ⊢ ( 𝑖 = 𝐼 → ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 7 | df-rrn | ⊢ ℝn = ( 𝑖 ∈ Fin ↦ ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | |
| 8 | fvrn0 | ⊢ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ( ran √ ∪ { ∅ } ) | |
| 9 | 8 | rgen2w | ⊢ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ( ran √ ∪ { ∅ } ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) | |
| 11 | 10 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ∈ ( ran √ ∪ { ∅ } ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ ( ran √ ∪ { ∅ } ) ) |
| 12 | 9 11 | mpbi | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ ( ran √ ∪ { ∅ } ) |
| 13 | ovex | ⊢ ( ℝ ↑m 𝐼 ) ∈ V | |
| 14 | 1 13 | eqeltri | ⊢ 𝑋 ∈ V |
| 15 | 14 14 | xpex | ⊢ ( 𝑋 × 𝑋 ) ∈ V |
| 16 | cnex | ⊢ ℂ ∈ V | |
| 17 | sqrtf | ⊢ √ : ℂ ⟶ ℂ | |
| 18 | frn | ⊢ ( √ : ℂ ⟶ ℂ → ran √ ⊆ ℂ ) | |
| 19 | 17 18 | ax-mp | ⊢ ran √ ⊆ ℂ |
| 20 | 16 19 | ssexi | ⊢ ran √ ∈ V |
| 21 | p0ex | ⊢ { ∅ } ∈ V | |
| 22 | 20 21 | unex | ⊢ ( ran √ ∪ { ∅ } ) ∈ V |
| 23 | fex2 | ⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ ( ran √ ∪ { ∅ } ) ∧ ( 𝑋 × 𝑋 ) ∈ V ∧ ( ran √ ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ∈ V ) | |
| 24 | 12 15 22 23 | mp3an | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ∈ V |
| 25 | 6 7 24 | fvmpt | ⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |