This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rrxmet . (Contributed by Thierry Arnoux, 5-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| rrxmval.d | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | ||
| rrxmetlem.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| rrxmetlem.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | ||
| rrxmetlem.3 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) | ||
| rrxmetlem.4 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) | ||
| rrxmetlem.5 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| rrxmetlem.6 | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐴 ) | ||
| Assertion | rrxmetlem | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| 2 | rrxmval.d | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 3 | rrxmetlem.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | rrxmetlem.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | |
| 5 | rrxmetlem.3 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) | |
| 6 | rrxmetlem.4 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) | |
| 7 | rrxmetlem.5 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 8 | rrxmetlem.6 | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐴 ) | |
| 9 | 8 6 | sstrd | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ⊆ 𝐼 ) |
| 10 | 9 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → 𝑘 ∈ 𝐼 ) |
| 11 | 1 4 | rrxf | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ℝ ) |
| 12 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 14 | 10 13 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 15 | 1 5 | rrxf | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ ℝ ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 18 | 10 17 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 19 | 14 18 | subcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 20 | 19 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℂ ) |
| 21 | 6 | ssdifd | ⊢ ( 𝜑 → ( 𝐴 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ⊆ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) |
| 22 | 21 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) | |
| 24 | 23 | eldifad | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → 𝑘 ∈ 𝐼 ) |
| 25 | 24 13 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 26 | ssun1 | ⊢ ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) | |
| 27 | 26 | a1i | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| 28 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 29 | 11 27 3 28 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
| 30 | ssun2 | ⊢ ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) | |
| 31 | 30 | a1i | ⊢ ( 𝜑 → ( 𝐺 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| 32 | 15 31 3 28 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 ‘ 𝑘 ) = 0 ) |
| 33 | 29 32 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 34 | 25 33 | subeq0bd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
| 35 | 34 | sq0id | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = 0 ) |
| 36 | 22 35 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = 0 ) |
| 37 | 8 20 36 7 | fsumss | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = Σ 𝑘 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) |