This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Euclidean metric. Compare with rrnval . (Contributed by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| rrxmval.d | |- D = ( dist ` ( RR^ ` I ) ) |
||
| Assertion | rrxmfval | |- ( I e. V -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| 2 | rrxmval.d | |- D = ( dist ` ( RR^ ` I ) ) |
|
| 3 | eqid | |- ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) |
|
| 4 | fvex | |- ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) e. _V |
|
| 5 | 3 4 | fnmpoi | |- ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) Fn ( ( Base ` ( RR^ ` I ) ) X. ( Base ` ( RR^ ` I ) ) ) |
| 6 | eqid | |- ( RR^ ` I ) = ( RR^ ` I ) |
|
| 7 | eqid | |- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
|
| 8 | 6 7 | rrxds | |- ( I e. V -> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` ( RR^ ` I ) ) ) |
| 9 | 2 8 | eqtr4id | |- ( I e. V -> D = ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) |
| 10 | 6 7 | rrxbase | |- ( I e. V -> ( Base ` ( RR^ ` I ) ) = { h e. ( RR ^m I ) | h finSupp 0 } ) |
| 11 | 1 10 | eqtr4id | |- ( I e. V -> X = ( Base ` ( RR^ ` I ) ) ) |
| 12 | 11 | sqxpeqd | |- ( I e. V -> ( X X. X ) = ( ( Base ` ( RR^ ` I ) ) X. ( Base ` ( RR^ ` I ) ) ) ) |
| 13 | 9 12 | fneq12d | |- ( I e. V -> ( D Fn ( X X. X ) <-> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) Fn ( ( Base ` ( RR^ ` I ) ) X. ( Base ` ( RR^ ` I ) ) ) ) ) |
| 14 | 5 13 | mpbiri | |- ( I e. V -> D Fn ( X X. X ) ) |
| 15 | fnov | |- ( D Fn ( X X. X ) <-> D = ( f e. X , g e. X |-> ( f D g ) ) ) |
|
| 16 | 14 15 | sylib | |- ( I e. V -> D = ( f e. X , g e. X |-> ( f D g ) ) ) |
| 17 | 1 2 | rrxmval | |- ( ( I e. V /\ f e. X /\ g e. X ) -> ( f D g ) = ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
| 18 | 17 | mpoeq3dva | |- ( I e. V -> ( f e. X , g e. X |-> ( f D g ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 19 | 16 18 | eqtrd | |- ( I e. V -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |