This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | |- H = ( RR^ ` I ) |
|
| rrxbase.b | |- B = ( Base ` H ) |
||
| Assertion | rrxip | |- ( I e. V -> ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) = ( .i ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | |- H = ( RR^ ` I ) |
|
| 2 | rrxbase.b | |- B = ( Base ` H ) |
|
| 3 | 1 2 | rrxprds | |- ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |
| 4 | 3 | fveq2d | |- ( I e. V -> ( .i ` H ) = ( .i ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) ) |
| 5 | eqid | |- ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) |
|
| 6 | eqid | |- ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) |
|
| 7 | 5 6 | tcphip | |- ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) = ( .i ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |
| 8 | 2 | fvexi | |- B e. _V |
| 9 | eqid | |- ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) = ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) |
|
| 10 | eqid | |- ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
|
| 11 | 9 10 | ressip | |- ( B e. _V -> ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |
| 12 | 8 11 | ax-mp | |- ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) |
| 13 | eqid | |- ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |
|
| 14 | refld | |- RRfld e. Field |
|
| 15 | 14 | a1i | |- ( I e. V -> RRfld e. Field ) |
| 16 | snex | |- { ( ( subringAlg ` RRfld ) ` RR ) } e. _V |
|
| 17 | xpexg | |- ( ( I e. V /\ { ( ( subringAlg ` RRfld ) ` RR ) } e. _V ) -> ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) e. _V ) |
|
| 18 | 16 17 | mpan2 | |- ( I e. V -> ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) e. _V ) |
| 19 | eqid | |- ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
|
| 20 | fvex | |- ( ( subringAlg ` RRfld ) ` RR ) e. _V |
|
| 21 | 20 | snnz | |- { ( ( subringAlg ` RRfld ) ` RR ) } =/= (/) |
| 22 | dmxp | |- ( { ( ( subringAlg ` RRfld ) ` RR ) } =/= (/) -> dom ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) = I ) |
|
| 23 | 21 22 | ax-mp | |- dom ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) = I |
| 24 | 23 | a1i | |- ( I e. V -> dom ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) = I ) |
| 25 | 13 15 18 19 24 10 | prdsip | |- ( I e. V -> ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( f e. ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) , g e. ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) ) ) ) |
| 26 | 13 15 18 19 24 | prdsbas | |- ( I e. V -> ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ) |
| 27 | eqidd | |- ( x e. I -> ( ( subringAlg ` RRfld ) ` RR ) = ( ( subringAlg ` RRfld ) ` RR ) ) |
|
| 28 | rebase | |- RR = ( Base ` RRfld ) |
|
| 29 | 28 | eqimssi | |- RR C_ ( Base ` RRfld ) |
| 30 | 29 | a1i | |- ( x e. I -> RR C_ ( Base ` RRfld ) ) |
| 31 | 27 30 | srabase | |- ( x e. I -> ( Base ` RRfld ) = ( Base ` ( ( subringAlg ` RRfld ) ` RR ) ) ) |
| 32 | 28 | a1i | |- ( x e. I -> RR = ( Base ` RRfld ) ) |
| 33 | 20 | fvconst2 | |- ( x e. I -> ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) = ( ( subringAlg ` RRfld ) ` RR ) ) |
| 34 | 33 | fveq2d | |- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = ( Base ` ( ( subringAlg ` RRfld ) ` RR ) ) ) |
| 35 | 31 32 34 | 3eqtr4rd | |- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = RR ) |
| 36 | 35 | adantl | |- ( ( I e. V /\ x e. I ) -> ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = RR ) |
| 37 | 36 | ixpeq2dva | |- ( I e. V -> X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = X_ x e. I RR ) |
| 38 | reex | |- RR e. _V |
|
| 39 | ixpconstg | |- ( ( I e. V /\ RR e. _V ) -> X_ x e. I RR = ( RR ^m I ) ) |
|
| 40 | 38 39 | mpan2 | |- ( I e. V -> X_ x e. I RR = ( RR ^m I ) ) |
| 41 | 26 37 40 | 3eqtrd | |- ( I e. V -> ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( RR ^m I ) ) |
| 42 | remulr | |- x. = ( .r ` RRfld ) |
|
| 43 | 33 30 | sraip | |- ( x e. I -> ( .r ` RRfld ) = ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ) |
| 44 | 42 43 | eqtr2id | |- ( x e. I -> ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = x. ) |
| 45 | 44 | oveqd | |- ( x e. I -> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) = ( ( f ` x ) x. ( g ` x ) ) ) |
| 46 | 45 | mpteq2ia | |- ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) |
| 47 | 46 | a1i | |- ( I e. V -> ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) |
| 48 | 47 | oveq2d | |- ( I e. V -> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) |
| 49 | 41 41 48 | mpoeq123dv | |- ( I e. V -> ( f e. ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) , g e. ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) ) |
| 50 | 25 49 | eqtrd | |- ( I e. V -> ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) ) |
| 51 | 12 50 | eqtr3id | |- ( I e. V -> ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) ) |
| 52 | 7 51 | eqtr3id | |- ( I e. V -> ( .i ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) ) |
| 53 | 4 52 | eqtr2d | |- ( I e. V -> ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) = ( .i ` H ) ) |