This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| Assertion | rrxprds | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 3 | 1 | rrxval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 4 | refld | ⊢ ℝfld ∈ Field | |
| 5 | eqid | ⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 7 | 5 6 | frlmpws | ⊢ ( ( ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld freeLMod 𝐼 ) = ( ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ↾s ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 8 | 4 7 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) = ( ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ↾s ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 9 | fvex | ⊢ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ∈ V | |
| 10 | rlmval | ⊢ ( ringLMod ‘ ℝfld ) = ( ( subringAlg ‘ ℝfld ) ‘ ( Base ‘ ℝfld ) ) | |
| 11 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 12 | 11 | fveq2i | ⊢ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℝfld ) ‘ ( Base ‘ ℝfld ) ) |
| 13 | 10 12 | eqtr4i | ⊢ ( ringLMod ‘ ℝfld ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) |
| 14 | 13 | oveq1i | ⊢ ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) = ( ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ↑s 𝐼 ) |
| 15 | 11 | ressid | ⊢ ( ℝfld ∈ Field → ( ℝfld ↾s ℝ ) = ℝfld ) |
| 16 | 4 15 | ax-mp | ⊢ ( ℝfld ↾s ℝ ) = ℝfld |
| 17 | eqidd | ⊢ ( ⊤ → ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) | |
| 18 | 11 | eqimssi | ⊢ ℝ ⊆ ( Base ‘ ℝfld ) |
| 19 | 18 | a1i | ⊢ ( ⊤ → ℝ ⊆ ( Base ‘ ℝfld ) ) |
| 20 | 17 19 | srasca | ⊢ ( ⊤ → ( ℝfld ↾s ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) ) |
| 21 | 20 | mptru | ⊢ ( ℝfld ↾s ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) |
| 22 | 16 21 | eqtr3i | ⊢ ℝfld = ( Scalar ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) |
| 23 | 14 22 | pwsval | ⊢ ( ( ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) = ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) |
| 24 | 9 23 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) = ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) |
| 25 | 24 | eqcomd | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) = ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ) |
| 26 | 3 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 27 | eqid | ⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 28 | 27 6 | tcphbas | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 29 | 26 2 28 | 3eqtr4g | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 30 | 25 29 | oveq12d | ⊢ ( 𝐼 ∈ 𝑉 → ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) = ( ( ( ringLMod ‘ ℝfld ) ↑s 𝐼 ) ↾s ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 31 | 8 30 | eqtr4d | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) = ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) |
| 32 | 31 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |
| 33 | 3 32 | eqtrd | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |