This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a transitive closure is the same as the range of the original class. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnttrcl | |- ran t++ R = ran R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ttrcl | |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
|
| 2 | 1 | rneqi | |- ran t++ R = ran { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 3 | rnopab | |- ran { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } = { y | E. x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
|
| 4 | 2 3 | eqtri | |- ran t++ R = { y | E. x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 5 | fveq2 | |- ( a = U. n -> ( f ` a ) = ( f ` U. n ) ) |
|
| 6 | suceq | |- ( a = U. n -> suc a = suc U. n ) |
|
| 7 | 6 | fveq2d | |- ( a = U. n -> ( f ` suc a ) = ( f ` suc U. n ) ) |
| 8 | 5 7 | breq12d | |- ( a = U. n -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` U. n ) R ( f ` suc U. n ) ) ) |
| 9 | simpr3 | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. n ( f ` a ) R ( f ` suc a ) ) |
|
| 10 | df-1o | |- 1o = suc (/) |
|
| 11 | 10 | difeq2i | |- ( _om \ 1o ) = ( _om \ suc (/) ) |
| 12 | 11 | eleq2i | |- ( n e. ( _om \ 1o ) <-> n e. ( _om \ suc (/) ) ) |
| 13 | peano1 | |- (/) e. _om |
|
| 14 | eldifsucnn | |- ( (/) e. _om -> ( n e. ( _om \ suc (/) ) <-> E. x e. ( _om \ (/) ) n = suc x ) ) |
|
| 15 | 13 14 | ax-mp | |- ( n e. ( _om \ suc (/) ) <-> E. x e. ( _om \ (/) ) n = suc x ) |
| 16 | dif0 | |- ( _om \ (/) ) = _om |
|
| 17 | 16 | rexeqi | |- ( E. x e. ( _om \ (/) ) n = suc x <-> E. x e. _om n = suc x ) |
| 18 | 12 15 17 | 3bitri | |- ( n e. ( _om \ 1o ) <-> E. x e. _om n = suc x ) |
| 19 | nnord | |- ( x e. _om -> Ord x ) |
|
| 20 | ordunisuc | |- ( Ord x -> U. suc x = x ) |
|
| 21 | 19 20 | syl | |- ( x e. _om -> U. suc x = x ) |
| 22 | vex | |- x e. _V |
|
| 23 | 22 | sucid | |- x e. suc x |
| 24 | 21 23 | eqeltrdi | |- ( x e. _om -> U. suc x e. suc x ) |
| 25 | unieq | |- ( n = suc x -> U. n = U. suc x ) |
|
| 26 | id | |- ( n = suc x -> n = suc x ) |
|
| 27 | 25 26 | eleq12d | |- ( n = suc x -> ( U. n e. n <-> U. suc x e. suc x ) ) |
| 28 | 24 27 | syl5ibrcom | |- ( x e. _om -> ( n = suc x -> U. n e. n ) ) |
| 29 | 28 | rexlimiv | |- ( E. x e. _om n = suc x -> U. n e. n ) |
| 30 | 18 29 | sylbi | |- ( n e. ( _om \ 1o ) -> U. n e. n ) |
| 31 | 30 | adantr | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> U. n e. n ) |
| 32 | 8 9 31 | rspcdva | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` U. n ) R ( f ` suc U. n ) ) |
| 33 | suceq | |- ( U. suc x = x -> suc U. suc x = suc x ) |
|
| 34 | 21 33 | syl | |- ( x e. _om -> suc U. suc x = suc x ) |
| 35 | suceq | |- ( U. n = U. suc x -> suc U. n = suc U. suc x ) |
|
| 36 | 25 35 | syl | |- ( n = suc x -> suc U. n = suc U. suc x ) |
| 37 | 36 26 | eqeq12d | |- ( n = suc x -> ( suc U. n = n <-> suc U. suc x = suc x ) ) |
| 38 | 34 37 | syl5ibrcom | |- ( x e. _om -> ( n = suc x -> suc U. n = n ) ) |
| 39 | 38 | rexlimiv | |- ( E. x e. _om n = suc x -> suc U. n = n ) |
| 40 | 18 39 | sylbi | |- ( n e. ( _om \ 1o ) -> suc U. n = n ) |
| 41 | 40 | fveq2d | |- ( n e. ( _om \ 1o ) -> ( f ` suc U. n ) = ( f ` n ) ) |
| 42 | 41 | adantr | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc U. n ) = ( f ` n ) ) |
| 43 | simpr2r | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` n ) = y ) |
|
| 44 | 42 43 | eqtrd | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc U. n ) = y ) |
| 45 | 32 44 | breqtrd | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` U. n ) R y ) |
| 46 | fvex | |- ( f ` U. n ) e. _V |
|
| 47 | vex | |- y e. _V |
|
| 48 | 46 47 | brelrn | |- ( ( f ` U. n ) R y -> y e. ran R ) |
| 49 | 45 48 | syl | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> y e. ran R ) |
| 50 | 49 | ex | |- ( n e. ( _om \ 1o ) -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> y e. ran R ) ) |
| 51 | 50 | exlimdv | |- ( n e. ( _om \ 1o ) -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> y e. ran R ) ) |
| 52 | 51 | rexlimiv | |- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> y e. ran R ) |
| 53 | 52 | exlimiv | |- ( E. x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> y e. ran R ) |
| 54 | 53 | abssi | |- { y | E. x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } C_ ran R |
| 55 | 4 54 | eqsstri | |- ran t++ R C_ ran R |
| 56 | rnresv | |- ran ( R |` _V ) = ran R |
|
| 57 | relres | |- Rel ( R |` _V ) |
|
| 58 | ssttrcl | |- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
|
| 59 | 57 58 | ax-mp | |- ( R |` _V ) C_ t++ ( R |` _V ) |
| 60 | ttrclresv | |- t++ ( R |` _V ) = t++ R |
|
| 61 | 59 60 | sseqtri | |- ( R |` _V ) C_ t++ R |
| 62 | 61 | rnssi | |- ran ( R |` _V ) C_ ran t++ R |
| 63 | 56 62 | eqsstrri | |- ran R C_ ran t++ R |
| 64 | 55 63 | eqssi | |- ran t++ R = ran R |