This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngoisoco | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsIso 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngoisohom | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) |
| 3 | 2 | 3adantl3 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) |
| 4 | rngoisohom | ⊢ ( ( 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) | |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) |
| 6 | 5 | 3adantl1 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) |
| 7 | 3 6 | anim12dan | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) ) |
| 8 | rngohomco | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsHom 𝑇 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ) | |
| 9 | 7 8 | syldan | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ) |
| 10 | eqid | ⊢ ( 1st ‘ 𝑆 ) = ( 1st ‘ 𝑆 ) | |
| 11 | eqid | ⊢ ran ( 1st ‘ 𝑆 ) = ran ( 1st ‘ 𝑆 ) | |
| 12 | eqid | ⊢ ( 1st ‘ 𝑇 ) = ( 1st ‘ 𝑇 ) | |
| 13 | eqid | ⊢ ran ( 1st ‘ 𝑇 ) = ran ( 1st ‘ 𝑇 ) | |
| 14 | 10 11 12 13 | rngoiso1o | ⊢ ( ( 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 15 | 14 | 3expa | ⊢ ( ( ( 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 16 | 15 | 3adantl1 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) → 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 17 | 16 | adantrl | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 18 | eqid | ⊢ ( 1st ‘ 𝑅 ) = ( 1st ‘ 𝑅 ) | |
| 19 | eqid | ⊢ ran ( 1st ‘ 𝑅 ) = ran ( 1st ‘ 𝑅 ) | |
| 20 | 18 19 10 11 | rngoiso1o | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) |
| 21 | 20 | 3expa | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) |
| 22 | 21 | 3adantl3 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) → 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) |
| 23 | 22 | adantrr | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) |
| 24 | f1oco | ⊢ ( ( 𝐺 : ran ( 1st ‘ 𝑆 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ∧ 𝐹 : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑆 ) ) → ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) | |
| 25 | 17 23 24 | syl2anc | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) |
| 26 | 18 19 12 13 | isrngoiso | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps ) → ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsIso 𝑇 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ∧ ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) ) ) |
| 27 | 26 | 3adant2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) → ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsIso 𝑇 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ∧ ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsIso 𝑇 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsHom 𝑇 ) ∧ ( 𝐺 ∘ 𝐹 ) : ran ( 1st ‘ 𝑅 ) –1-1-onto→ ran ( 1st ‘ 𝑇 ) ) ) ) |
| 29 | 9 25 28 | mpbir2and | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ) ∧ ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ∧ 𝐺 ∈ ( 𝑆 RingOpsIso 𝑇 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 RingOpsIso 𝑇 ) ) |