This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-risc | ⊢ ≃𝑟 = { 〈 𝑟 , 𝑠 〉 ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crisc | ⊢ ≃𝑟 | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | vs | ⊢ 𝑠 | |
| 3 | 1 | cv | ⊢ 𝑟 |
| 4 | crngo | ⊢ RingOps | |
| 5 | 3 4 | wcel | ⊢ 𝑟 ∈ RingOps |
| 6 | 2 | cv | ⊢ 𝑠 |
| 7 | 6 4 | wcel | ⊢ 𝑠 ∈ RingOps |
| 8 | 5 7 | wa | ⊢ ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) |
| 9 | vf | ⊢ 𝑓 | |
| 10 | 9 | cv | ⊢ 𝑓 |
| 11 | crngoiso | ⊢ RingOpsIso | |
| 12 | 3 6 11 | co | ⊢ ( 𝑟 RingOpsIso 𝑠 ) |
| 13 | 10 12 | wcel | ⊢ 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) |
| 14 | 13 9 | wex | ⊢ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) |
| 15 | 8 14 | wa | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) |
| 16 | 15 1 2 | copab | ⊢ { 〈 𝑟 , 𝑠 〉 ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) } |
| 17 | 0 16 | wceq | ⊢ ≃𝑟 = { 〈 𝑟 , 𝑠 〉 ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) } |