This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a ring isomorphism between R and S ". (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngisoval.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| rngisoval.2 | ⊢ 𝑋 = ran 𝐺 | ||
| rngisoval.3 | ⊢ 𝐽 = ( 1st ‘ 𝑆 ) | ||
| rngisoval.4 | ⊢ 𝑌 = ran 𝐽 | ||
| Assertion | isrngoiso | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisoval.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | rngisoval.2 | ⊢ 𝑋 = ran 𝐺 | |
| 3 | rngisoval.3 | ⊢ 𝐽 = ( 1st ‘ 𝑆 ) | |
| 4 | rngisoval.4 | ⊢ 𝑌 = ran 𝐽 | |
| 5 | 1 2 3 4 | rngoisoval | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝑅 RingOpsIso 𝑆 ) = { 𝑓 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∣ 𝑓 : 𝑋 –1-1-onto→ 𝑌 } ) |
| 6 | 5 | eleq2d | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∣ 𝑓 : 𝑋 –1-1-onto→ 𝑌 } ) ) |
| 7 | f1oeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ↔ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) | |
| 8 | 7 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∣ 𝑓 : 𝑋 –1-1-onto→ 𝑌 } ↔ ( 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |
| 9 | 6 8 | bitrdi | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝐹 ∈ ( 𝑅 RingOpsIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) ) |