This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngoisoco | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( G o. F ) e. ( R RingOpsIso T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngoisohom | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) |
|
| 2 | 1 | 3expa | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) |
| 3 | 2 | 3adantl3 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) |
| 4 | rngoisohom | |- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsIso T ) ) -> G e. ( S RingOpsHom T ) ) |
|
| 5 | 4 | 3expa | |- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsIso T ) ) -> G e. ( S RingOpsHom T ) ) |
| 6 | 5 | 3adantl1 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsIso T ) ) -> G e. ( S RingOpsHom T ) ) |
| 7 | 3 6 | anim12dan | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) |
| 8 | rngohomco | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( G o. F ) e. ( R RingOpsHom T ) ) |
|
| 9 | 7 8 | syldan | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( G o. F ) e. ( R RingOpsHom T ) ) |
| 10 | eqid | |- ( 1st ` S ) = ( 1st ` S ) |
|
| 11 | eqid | |- ran ( 1st ` S ) = ran ( 1st ` S ) |
|
| 12 | eqid | |- ( 1st ` T ) = ( 1st ` T ) |
|
| 13 | eqid | |- ran ( 1st ` T ) = ran ( 1st ` T ) |
|
| 14 | 10 11 12 13 | rngoiso1o | |- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsIso T ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
| 15 | 14 | 3expa | |- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsIso T ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
| 16 | 15 | 3adantl1 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsIso T ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
| 17 | 16 | adantrl | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) ) |
| 18 | eqid | |- ( 1st ` R ) = ( 1st ` R ) |
|
| 19 | eqid | |- ran ( 1st ` R ) = ran ( 1st ` R ) |
|
| 20 | 18 19 10 11 | rngoiso1o | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
| 21 | 20 | 3expa | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
| 22 | 21 | 3adantl3 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
| 23 | 22 | adantrr | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) |
| 24 | f1oco | |- ( ( G : ran ( 1st ` S ) -1-1-onto-> ran ( 1st ` T ) /\ F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) -> ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) |
|
| 25 | 17 23 24 | syl2anc | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) |
| 26 | 18 19 12 13 | isrngoiso | |- ( ( R e. RingOps /\ T e. RingOps ) -> ( ( G o. F ) e. ( R RingOpsIso T ) <-> ( ( G o. F ) e. ( R RingOpsHom T ) /\ ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) ) ) |
| 27 | 26 | 3adant2 | |- ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) -> ( ( G o. F ) e. ( R RingOpsIso T ) <-> ( ( G o. F ) e. ( R RingOpsHom T ) /\ ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) ) ) |
| 28 | 27 | adantr | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( ( G o. F ) e. ( R RingOpsIso T ) <-> ( ( G o. F ) e. ( R RingOpsHom T ) /\ ( G o. F ) : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` T ) ) ) ) |
| 29 | 9 25 28 | mpbir2and | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsIso S ) /\ G e. ( S RingOpsIso T ) ) ) -> ( G o. F ) e. ( R RingOpsIso T ) ) |