This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negation of a product in a non-unital ring ( mul2neg analog). (Contributed by Mario Carneiro, 4-Dec-2014) Generalization of ringm2neg . (Revised by AV, 17-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngneglmul.b | ||
| rngneglmul.t | |||
| rngneglmul.n | |||
| rngneglmul.r | |||
| rngneglmul.x | |||
| rngneglmul.y | |||
| Assertion | rngm2neg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | ||
| 2 | rngneglmul.t | ||
| 3 | rngneglmul.n | ||
| 4 | rngneglmul.r | ||
| 5 | rngneglmul.x | ||
| 6 | rngneglmul.y | ||
| 7 | rnggrp | ||
| 8 | 4 7 | syl | |
| 9 | 1 3 8 6 | grpinvcld | |
| 10 | 1 2 3 4 5 9 | rngmneg1 | |
| 11 | 1 2 3 4 5 6 | rngmneg2 | |
| 12 | 11 | fveq2d | |
| 13 | 1 2 | rngcl | |
| 14 | 4 5 6 13 | syl3anc | |
| 15 | 1 3 | grpinvinv | |
| 16 | 8 14 15 | syl2anc | |
| 17 | 10 12 16 | 3eqtrd |