This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negation of a product in a non-unital ring ( mul2neg analog). (Contributed by Mario Carneiro, 4-Dec-2014) Generalization of ringm2neg . (Revised by AV, 17-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngneglmul.b | |- B = ( Base ` R ) |
|
| rngneglmul.t | |- .x. = ( .r ` R ) |
||
| rngneglmul.n | |- N = ( invg ` R ) |
||
| rngneglmul.r | |- ( ph -> R e. Rng ) |
||
| rngneglmul.x | |- ( ph -> X e. B ) |
||
| rngneglmul.y | |- ( ph -> Y e. B ) |
||
| Assertion | rngm2neg | |- ( ph -> ( ( N ` X ) .x. ( N ` Y ) ) = ( X .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | |- B = ( Base ` R ) |
|
| 2 | rngneglmul.t | |- .x. = ( .r ` R ) |
|
| 3 | rngneglmul.n | |- N = ( invg ` R ) |
|
| 4 | rngneglmul.r | |- ( ph -> R e. Rng ) |
|
| 5 | rngneglmul.x | |- ( ph -> X e. B ) |
|
| 6 | rngneglmul.y | |- ( ph -> Y e. B ) |
|
| 7 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
| 8 | 4 7 | syl | |- ( ph -> R e. Grp ) |
| 9 | 1 3 8 6 | grpinvcld | |- ( ph -> ( N ` Y ) e. B ) |
| 10 | 1 2 3 4 5 9 | rngmneg1 | |- ( ph -> ( ( N ` X ) .x. ( N ` Y ) ) = ( N ` ( X .x. ( N ` Y ) ) ) ) |
| 11 | 1 2 3 4 5 6 | rngmneg2 | |- ( ph -> ( X .x. ( N ` Y ) ) = ( N ` ( X .x. Y ) ) ) |
| 12 | 11 | fveq2d | |- ( ph -> ( N ` ( X .x. ( N ` Y ) ) ) = ( N ` ( N ` ( X .x. Y ) ) ) ) |
| 13 | 1 2 | rngcl | |- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 14 | 4 5 6 13 | syl3anc | |- ( ph -> ( X .x. Y ) e. B ) |
| 15 | 1 3 | grpinvinv | |- ( ( R e. Grp /\ ( X .x. Y ) e. B ) -> ( N ` ( N ` ( X .x. Y ) ) ) = ( X .x. Y ) ) |
| 16 | 8 14 15 | syl2anc | |- ( ph -> ( N ` ( N ` ( X .x. Y ) ) ) = ( X .x. Y ) ) |
| 17 | 10 12 16 | 3eqtrd | |- ( ph -> ( ( N ` X ) .x. ( N ` Y ) ) = ( X .x. Y ) ) |