This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption U e. ( SubGrpR ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidlabl.l | |- L = ( LIdeal ` R ) |
|
| rnglidlabl.i | |- I = ( R |`s U ) |
||
| Assertion | rnglidlrng | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> I e. Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlabl.l | |- L = ( LIdeal ` R ) |
|
| 2 | rnglidlabl.i | |- I = ( R |`s U ) |
|
| 3 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> R e. Abel ) |
| 5 | simp3 | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> U e. ( SubGrp ` R ) ) |
|
| 6 | 2 | subgabl | |- ( ( R e. Abel /\ U e. ( SubGrp ` R ) ) -> I e. Abel ) |
| 7 | 4 5 6 | syl2anc | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> I e. Abel ) |
| 8 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 9 | 8 | subg0cl | |- ( U e. ( SubGrp ` R ) -> ( 0g ` R ) e. U ) |
| 10 | 1 2 8 | rnglidlmsgrp | |- ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) |
| 11 | 9 10 | syl3an3 | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) |
| 12 | simpl1 | |- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> R e. Rng ) |
|
| 13 | 1 2 | lidlssbas | |- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |
| 14 | 13 | sseld | |- ( U e. L -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
| 15 | 13 | sseld | |- ( U e. L -> ( b e. ( Base ` I ) -> b e. ( Base ` R ) ) ) |
| 16 | 13 | sseld | |- ( U e. L -> ( c e. ( Base ` I ) -> c e. ( Base ` R ) ) ) |
| 17 | 14 15 16 | 3anim123d | |- ( U e. L -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
| 18 | 17 | 3ad2ant2 | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
| 19 | 18 | imp | |- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) |
| 20 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 21 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 22 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 23 | 20 21 22 | rngdi | |- ( ( R e. Rng /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) |
| 24 | 12 19 23 | syl2anc | |- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) |
| 25 | 20 21 22 | rngdir | |- ( ( R e. Rng /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) |
| 26 | 12 19 25 | syl2anc | |- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) |
| 27 | 2 22 | ressmulr | |- ( U e. L -> ( .r ` R ) = ( .r ` I ) ) |
| 28 | 27 | eqcomd | |- ( U e. L -> ( .r ` I ) = ( .r ` R ) ) |
| 29 | eqidd | |- ( U e. L -> a = a ) |
|
| 30 | 2 21 | ressplusg | |- ( U e. L -> ( +g ` R ) = ( +g ` I ) ) |
| 31 | 30 | eqcomd | |- ( U e. L -> ( +g ` I ) = ( +g ` R ) ) |
| 32 | 31 | oveqd | |- ( U e. L -> ( b ( +g ` I ) c ) = ( b ( +g ` R ) c ) ) |
| 33 | 28 29 32 | oveq123d | |- ( U e. L -> ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( a ( .r ` R ) ( b ( +g ` R ) c ) ) ) |
| 34 | 28 | oveqd | |- ( U e. L -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) ) |
| 35 | 28 | oveqd | |- ( U e. L -> ( a ( .r ` I ) c ) = ( a ( .r ` R ) c ) ) |
| 36 | 31 34 35 | oveq123d | |- ( U e. L -> ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) |
| 37 | 33 36 | eqeq12d | |- ( U e. L -> ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) <-> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) ) |
| 38 | 31 | oveqd | |- ( U e. L -> ( a ( +g ` I ) b ) = ( a ( +g ` R ) b ) ) |
| 39 | eqidd | |- ( U e. L -> c = c ) |
|
| 40 | 28 38 39 | oveq123d | |- ( U e. L -> ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( +g ` R ) b ) ( .r ` R ) c ) ) |
| 41 | 28 | oveqd | |- ( U e. L -> ( b ( .r ` I ) c ) = ( b ( .r ` R ) c ) ) |
| 42 | 31 35 41 | oveq123d | |- ( U e. L -> ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) |
| 43 | 40 42 | eqeq12d | |- ( U e. L -> ( ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) |
| 44 | 37 43 | anbi12d | |- ( U e. L -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
| 45 | 44 | 3ad2ant2 | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
| 46 | 45 | adantr | |- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
| 47 | 24 26 46 | mpbir2and | |- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) |
| 48 | 47 | ralrimivvva | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) |
| 49 | eqid | |- ( Base ` I ) = ( Base ` I ) |
|
| 50 | eqid | |- ( mulGrp ` I ) = ( mulGrp ` I ) |
|
| 51 | eqid | |- ( +g ` I ) = ( +g ` I ) |
|
| 52 | eqid | |- ( .r ` I ) = ( .r ` I ) |
|
| 53 | 49 50 51 52 | isrng | |- ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) |
| 54 | 7 11 48 53 | syl3anbrc | |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> I e. Rng ) |