This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of the non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 22-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrnghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isrnghm.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| isrnghm.m | ⊢ ∗ = ( .r ‘ 𝑆 ) | ||
| rnghmval.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| rnghmval.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| rnghmval.a | ⊢ ✚ = ( +g ‘ 𝑆 ) | ||
| Assertion | rnghmval | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑅 RngHom 𝑆 ) = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isrnghm.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | isrnghm.m | ⊢ ∗ = ( .r ‘ 𝑆 ) | |
| 4 | rnghmval.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | rnghmval.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 6 | rnghmval.a | ⊢ ✚ = ( +g ‘ 𝑆 ) | |
| 7 | df-rnghm | ⊢ RngHom = ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | |
| 8 | 7 | a1i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → RngHom = ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) ) |
| 9 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 10 | 9 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 11 | 10 | csbeq1d | ⊢ ( 𝑟 = 𝑅 → ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = ⦋ 𝐵 / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 12 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) | |
| 13 | 12 4 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = 𝐶 ) |
| 14 | 13 | csbeq1d | ⊢ ( 𝑠 = 𝑆 → ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = ⦋ 𝐶 / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 15 | 14 | csbeq2dv | ⊢ ( 𝑠 = 𝑆 → ⦋ 𝐵 / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = ⦋ 𝐵 / 𝑣 ⦌ ⦋ 𝐶 / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 16 | 11 15 | sylan9eq | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = ⦋ 𝐵 / 𝑣 ⦌ ⦋ 𝐶 / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = ⦋ 𝐵 / 𝑣 ⦌ ⦋ 𝐶 / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 18 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 19 | 4 | fvexi | ⊢ 𝐶 ∈ V |
| 20 | oveq12 | ⊢ ( ( 𝑤 = 𝐶 ∧ 𝑣 = 𝐵 ) → ( 𝑤 ↑m 𝑣 ) = ( 𝐶 ↑m 𝐵 ) ) | |
| 21 | 20 | ancoms | ⊢ ( ( 𝑣 = 𝐵 ∧ 𝑤 = 𝐶 ) → ( 𝑤 ↑m 𝑣 ) = ( 𝐶 ↑m 𝐵 ) ) |
| 22 | raleq | ⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | |
| 23 | 22 | raleqbi1dv | ⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑣 = 𝐵 ∧ 𝑤 = 𝐶 ) → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 25 | 21 24 | rabeqbidv | ⊢ ( ( 𝑣 = 𝐵 ∧ 𝑤 = 𝐶 ) → { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 26 | 18 19 25 | csbie2 | ⊢ ⦋ 𝐵 / 𝑣 ⦌ ⦋ 𝐶 / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
| 27 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) | |
| 28 | 27 5 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( +g ‘ 𝑟 ) = + ) |
| 29 | 28 | oveqdr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 31 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = ( +g ‘ 𝑆 ) ) | |
| 32 | 31 6 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = ✚ ) |
| 33 | 32 | adantl | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( +g ‘ 𝑠 ) = ✚ ) |
| 34 | 33 | oveqd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ) |
| 35 | 30 34 | eqeq12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 36 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) | |
| 37 | 36 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 38 | 37 | oveqdr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 39 | 38 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 40 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( .r ‘ 𝑠 ) = ( .r ‘ 𝑆 ) ) | |
| 41 | 40 3 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( .r ‘ 𝑠 ) = ∗ ) |
| 42 | 41 | adantl | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( .r ‘ 𝑠 ) = ∗ ) |
| 43 | 42 | oveqd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) |
| 44 | 39 43 | eqeq12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 45 | 35 44 | anbi12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 46 | 45 | 2ralbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 47 | 46 | rabbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 48 | 26 47 | eqtrid | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ⦋ 𝐵 / 𝑣 ⦌ ⦋ 𝐶 / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 49 | 48 | adantl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ⦋ 𝐵 / 𝑣 ⦌ ⦋ 𝐶 / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 50 | 17 49 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 51 | simpl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → 𝑅 ∈ Rng ) | |
| 52 | simpr | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → 𝑆 ∈ Rng ) | |
| 53 | ovex | ⊢ ( 𝐶 ↑m 𝐵 ) ∈ V | |
| 54 | 53 | rabex | ⊢ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V |
| 55 | 54 | a1i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V ) |
| 56 | 8 50 51 52 55 | ovmpod | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑅 RngHom 𝑆 ) = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ✚ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ) |