This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of non-unital ring homomorphisms from r to s . (Contributed by AV, 20-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rnghm | ⊢ RngHom = ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crnghm | ⊢ RngHom | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | crng | ⊢ Rng | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑟 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 7 | vv | ⊢ 𝑣 | |
| 8 | 3 | cv | ⊢ 𝑠 |
| 9 | 8 4 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 10 | vw | ⊢ 𝑤 | |
| 11 | vf | ⊢ 𝑓 | |
| 12 | 10 | cv | ⊢ 𝑤 |
| 13 | cmap | ⊢ ↑m | |
| 14 | 7 | cv | ⊢ 𝑣 |
| 15 | 12 14 13 | co | ⊢ ( 𝑤 ↑m 𝑣 ) |
| 16 | vx | ⊢ 𝑥 | |
| 17 | vy | ⊢ 𝑦 | |
| 18 | 11 | cv | ⊢ 𝑓 |
| 19 | 16 | cv | ⊢ 𝑥 |
| 20 | cplusg | ⊢ +g | |
| 21 | 5 20 | cfv | ⊢ ( +g ‘ 𝑟 ) |
| 22 | 17 | cv | ⊢ 𝑦 |
| 23 | 19 22 21 | co | ⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) |
| 24 | 23 18 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) |
| 25 | 19 18 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 26 | 8 20 | cfv | ⊢ ( +g ‘ 𝑠 ) |
| 27 | 22 18 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 28 | 25 27 26 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
| 29 | 24 28 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
| 30 | cmulr | ⊢ .r | |
| 31 | 5 30 | cfv | ⊢ ( .r ‘ 𝑟 ) |
| 32 | 19 22 31 | co | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
| 33 | 32 18 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) |
| 34 | 8 30 | cfv | ⊢ ( .r ‘ 𝑠 ) |
| 35 | 25 27 34 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
| 36 | 33 35 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
| 37 | 29 36 | wa | ⊢ ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 38 | 37 17 14 | wral | ⊢ ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 39 | 38 16 14 | wral | ⊢ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 40 | 39 11 15 | crab | ⊢ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
| 41 | 10 9 40 | csb | ⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
| 42 | 7 6 41 | csb | ⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
| 43 | 1 3 2 2 42 | cmpo | ⊢ ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 44 | 0 43 | wceq | ⊢ RngHom = ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |