This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rlimsqz and rlimsqz2 . (Contributed by Mario Carneiro, 18-Sep-2014) (Revised by Mario Carneiro, 20-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimsqzlem.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| rlimsqzlem.e | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) | ||
| rlimsqzlem.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | ||
| rlimsqzlem.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| rlimsqzlem.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| rlimsqzlem.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐸 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ) | ||
| Assertion | rlimsqzlem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimsqzlem.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 2 | rlimsqzlem.e | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) | |
| 3 | rlimsqzlem.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | |
| 4 | rlimsqzlem.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 5 | rlimsqzlem.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 6 | rlimsqzlem.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐸 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ) | |
| 7 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → 𝑀 ∈ ℝ ) |
| 8 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℝ ) |
| 9 | elicopnf | ⊢ ( 𝑀 ∈ ℝ → ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑀 ≤ 𝑧 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑀 ≤ 𝑧 ) ) ) |
| 11 | 10 | simprbda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) → 𝑧 ∈ ℝ ) |
| 12 | 11 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → 𝑧 ∈ ℝ ) |
| 13 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 14 | 13 4 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 15 | rlimss | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 17 | 14 16 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐴 ⊆ ℝ ) |
| 19 | 18 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 20 | 19 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 21 | 10 | simplbda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ≤ 𝑧 ) |
| 22 | 21 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → 𝑀 ≤ 𝑧 ) |
| 23 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → 𝑧 ≤ 𝑥 ) | |
| 24 | 7 12 20 22 23 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → 𝑀 ≤ 𝑥 ) |
| 25 | 6 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑀 ≤ 𝑥 ) → ( abs ‘ ( 𝐶 − 𝐸 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ) |
| 26 | 25 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑀 ≤ 𝑥 ) → ( abs ‘ ( 𝐶 − 𝐸 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ) |
| 27 | 24 26 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐸 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ) |
| 28 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐸 ∈ ℂ ) |
| 29 | 5 28 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 − 𝐸 ) ∈ ℂ ) |
| 30 | 29 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐶 − 𝐸 ) ) ∈ ℝ ) |
| 31 | 30 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐸 ) ) ∈ ℝ ) |
| 32 | rlimcl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ ) | |
| 33 | 3 32 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ ℂ ) |
| 35 | 4 34 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − 𝐷 ) ∈ ℂ ) |
| 36 | 35 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐷 ) ) ∈ ℝ ) |
| 37 | 36 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐵 − 𝐷 ) ) ∈ ℝ ) |
| 38 | rpre | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) | |
| 39 | 38 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → 𝑦 ∈ ℝ ) |
| 40 | lelttr | ⊢ ( ( ( abs ‘ ( 𝐶 − 𝐸 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐵 − 𝐷 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( abs ‘ ( 𝐶 − 𝐸 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ∧ ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) | |
| 41 | 31 37 39 40 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → ( ( ( abs ‘ ( 𝐶 − 𝐸 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ∧ ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) |
| 42 | 27 41 | mpand | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( 𝑀 [,) +∞ ) ∧ 𝑧 ≤ 𝑥 ) ) → ( ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) |
| 43 | 42 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) ) |
| 44 | 43 | an32s | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 ≤ 𝑥 → ( ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) ) |
| 45 | 44 | a2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) ) |
| 46 | 45 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ( 𝑀 [,) +∞ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) ) |
| 47 | 46 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) ) |
| 48 | 47 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) ) |
| 49 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 50 | 49 17 33 1 | rlim3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐷 ) ) < 𝑦 ) ) ) |
| 51 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 52 | 51 17 2 1 | rlim3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝑀 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐸 ) ) < 𝑦 ) ) ) |
| 53 | 48 50 52 | 3imtr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) ) |
| 54 | 3 53 | mpd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) |