This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rlimsqz and rlimsqz2 . (Contributed by Mario Carneiro, 18-Sep-2014) (Revised by Mario Carneiro, 20-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimsqzlem.m | |- ( ph -> M e. RR ) |
|
| rlimsqzlem.e | |- ( ph -> E e. CC ) |
||
| rlimsqzlem.1 | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
||
| rlimsqzlem.2 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
||
| rlimsqzlem.3 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
||
| rlimsqzlem.4 | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` ( C - E ) ) <_ ( abs ` ( B - D ) ) ) |
||
| Assertion | rlimsqzlem | |- ( ph -> ( x e. A |-> C ) ~~>r E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimsqzlem.m | |- ( ph -> M e. RR ) |
|
| 2 | rlimsqzlem.e | |- ( ph -> E e. CC ) |
|
| 3 | rlimsqzlem.1 | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
|
| 4 | rlimsqzlem.2 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 5 | rlimsqzlem.3 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
|
| 6 | rlimsqzlem.4 | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` ( C - E ) ) <_ ( abs ` ( B - D ) ) ) |
|
| 7 | 1 | ad3antrrr | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> M e. RR ) |
| 8 | 1 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ x e. A ) -> M e. RR ) |
| 9 | elicopnf | |- ( M e. RR -> ( z e. ( M [,) +oo ) <-> ( z e. RR /\ M <_ z ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( ( ph /\ y e. RR+ ) /\ x e. A ) -> ( z e. ( M [,) +oo ) <-> ( z e. RR /\ M <_ z ) ) ) |
| 11 | 10 | simprbda | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ z e. ( M [,) +oo ) ) -> z e. RR ) |
| 12 | 11 | adantrr | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> z e. RR ) |
| 13 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 14 | 13 4 | dmmptd | |- ( ph -> dom ( x e. A |-> B ) = A ) |
| 15 | rlimss | |- ( ( x e. A |-> B ) ~~>r D -> dom ( x e. A |-> B ) C_ RR ) |
|
| 16 | 3 15 | syl | |- ( ph -> dom ( x e. A |-> B ) C_ RR ) |
| 17 | 14 16 | eqsstrrd | |- ( ph -> A C_ RR ) |
| 18 | 17 | adantr | |- ( ( ph /\ y e. RR+ ) -> A C_ RR ) |
| 19 | 18 | sselda | |- ( ( ( ph /\ y e. RR+ ) /\ x e. A ) -> x e. RR ) |
| 20 | 19 | adantr | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> x e. RR ) |
| 21 | 10 | simplbda | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ z e. ( M [,) +oo ) ) -> M <_ z ) |
| 22 | 21 | adantrr | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> M <_ z ) |
| 23 | simprr | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> z <_ x ) |
|
| 24 | 7 12 20 22 23 | letrd | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> M <_ x ) |
| 25 | 6 | anassrs | |- ( ( ( ph /\ x e. A ) /\ M <_ x ) -> ( abs ` ( C - E ) ) <_ ( abs ` ( B - D ) ) ) |
| 26 | 25 | adantllr | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ M <_ x ) -> ( abs ` ( C - E ) ) <_ ( abs ` ( B - D ) ) ) |
| 27 | 24 26 | syldan | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> ( abs ` ( C - E ) ) <_ ( abs ` ( B - D ) ) ) |
| 28 | 2 | adantr | |- ( ( ph /\ x e. A ) -> E e. CC ) |
| 29 | 5 28 | subcld | |- ( ( ph /\ x e. A ) -> ( C - E ) e. CC ) |
| 30 | 29 | abscld | |- ( ( ph /\ x e. A ) -> ( abs ` ( C - E ) ) e. RR ) |
| 31 | 30 | ad4ant13 | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> ( abs ` ( C - E ) ) e. RR ) |
| 32 | rlimcl | |- ( ( x e. A |-> B ) ~~>r D -> D e. CC ) |
|
| 33 | 3 32 | syl | |- ( ph -> D e. CC ) |
| 34 | 33 | adantr | |- ( ( ph /\ x e. A ) -> D e. CC ) |
| 35 | 4 34 | subcld | |- ( ( ph /\ x e. A ) -> ( B - D ) e. CC ) |
| 36 | 35 | abscld | |- ( ( ph /\ x e. A ) -> ( abs ` ( B - D ) ) e. RR ) |
| 37 | 36 | ad4ant13 | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> ( abs ` ( B - D ) ) e. RR ) |
| 38 | rpre | |- ( y e. RR+ -> y e. RR ) |
|
| 39 | 38 | ad3antlr | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> y e. RR ) |
| 40 | lelttr | |- ( ( ( abs ` ( C - E ) ) e. RR /\ ( abs ` ( B - D ) ) e. RR /\ y e. RR ) -> ( ( ( abs ` ( C - E ) ) <_ ( abs ` ( B - D ) ) /\ ( abs ` ( B - D ) ) < y ) -> ( abs ` ( C - E ) ) < y ) ) |
|
| 41 | 31 37 39 40 | syl3anc | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> ( ( ( abs ` ( C - E ) ) <_ ( abs ` ( B - D ) ) /\ ( abs ` ( B - D ) ) < y ) -> ( abs ` ( C - E ) ) < y ) ) |
| 42 | 27 41 | mpand | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ ( z e. ( M [,) +oo ) /\ z <_ x ) ) -> ( ( abs ` ( B - D ) ) < y -> ( abs ` ( C - E ) ) < y ) ) |
| 43 | 42 | expr | |- ( ( ( ( ph /\ y e. RR+ ) /\ x e. A ) /\ z e. ( M [,) +oo ) ) -> ( z <_ x -> ( ( abs ` ( B - D ) ) < y -> ( abs ` ( C - E ) ) < y ) ) ) |
| 44 | 43 | an32s | |- ( ( ( ( ph /\ y e. RR+ ) /\ z e. ( M [,) +oo ) ) /\ x e. A ) -> ( z <_ x -> ( ( abs ` ( B - D ) ) < y -> ( abs ` ( C - E ) ) < y ) ) ) |
| 45 | 44 | a2d | |- ( ( ( ( ph /\ y e. RR+ ) /\ z e. ( M [,) +oo ) ) /\ x e. A ) -> ( ( z <_ x -> ( abs ` ( B - D ) ) < y ) -> ( z <_ x -> ( abs ` ( C - E ) ) < y ) ) ) |
| 46 | 45 | ralimdva | |- ( ( ( ph /\ y e. RR+ ) /\ z e. ( M [,) +oo ) ) -> ( A. x e. A ( z <_ x -> ( abs ` ( B - D ) ) < y ) -> A. x e. A ( z <_ x -> ( abs ` ( C - E ) ) < y ) ) ) |
| 47 | 46 | reximdva | |- ( ( ph /\ y e. RR+ ) -> ( E. z e. ( M [,) +oo ) A. x e. A ( z <_ x -> ( abs ` ( B - D ) ) < y ) -> E. z e. ( M [,) +oo ) A. x e. A ( z <_ x -> ( abs ` ( C - E ) ) < y ) ) ) |
| 48 | 47 | ralimdva | |- ( ph -> ( A. y e. RR+ E. z e. ( M [,) +oo ) A. x e. A ( z <_ x -> ( abs ` ( B - D ) ) < y ) -> A. y e. RR+ E. z e. ( M [,) +oo ) A. x e. A ( z <_ x -> ( abs ` ( C - E ) ) < y ) ) ) |
| 49 | 4 | ralrimiva | |- ( ph -> A. x e. A B e. CC ) |
| 50 | 49 17 33 1 | rlim3 | |- ( ph -> ( ( x e. A |-> B ) ~~>r D <-> A. y e. RR+ E. z e. ( M [,) +oo ) A. x e. A ( z <_ x -> ( abs ` ( B - D ) ) < y ) ) ) |
| 51 | 5 | ralrimiva | |- ( ph -> A. x e. A C e. CC ) |
| 52 | 51 17 2 1 | rlim3 | |- ( ph -> ( ( x e. A |-> C ) ~~>r E <-> A. y e. RR+ E. z e. ( M [,) +oo ) A. x e. A ( z <_ x -> ( abs ` ( C - E ) ) < y ) ) ) |
| 53 | 48 50 52 | 3imtr4d | |- ( ph -> ( ( x e. A |-> B ) ~~>r D -> ( x e. A |-> C ) ~~>r E ) ) |
| 54 | 3 53 | mpd | |- ( ph -> ( x e. A |-> C ) ~~>r E ) |