This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 18-Sep-2014) (Revised by Mario Carneiro, 20-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimsqz.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| rlimsqz.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| rlimsqz.l | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | ||
| rlimsqz.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| rlimsqz.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | ||
| rlimsqz.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐶 ) | ||
| rlimsqz.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ≤ 𝐷 ) | ||
| Assertion | rlimsqz | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimsqz.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 2 | rlimsqz.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 3 | rlimsqz.l | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | |
| 4 | rlimsqz.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 5 | rlimsqz.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | |
| 6 | rlimsqz.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐶 ) | |
| 7 | rlimsqz.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ≤ 𝐷 ) | |
| 8 | 1 | recnd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 9 | 4 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 10 | 5 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 11 | 4 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
| 12 | 5 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ∈ ℝ ) |
| 13 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐷 ∈ ℝ ) |
| 14 | 11 12 13 6 | lesub2dd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( 𝐷 − 𝐶 ) ≤ ( 𝐷 − 𝐵 ) ) |
| 15 | 12 13 7 | abssuble0d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) = ( 𝐷 − 𝐶 ) ) |
| 16 | 11 12 13 6 7 | letrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐷 ) |
| 17 | 11 13 16 | abssuble0d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐵 − 𝐷 ) ) = ( 𝐷 − 𝐵 ) ) |
| 18 | 14 15 17 | 3brtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ) |
| 19 | 2 8 3 9 10 18 | rlimsqzlem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |