This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimcld2.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| rlimcld2.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
| rlimrecl.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| Assertion | rlimrecl | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcld2.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 2 | rlimcld2.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
| 3 | rlimrecl.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 6 | eldifi | ⊢ ( 𝑦 ∈ ( ℂ ∖ ℝ ) → 𝑦 ∈ ℂ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → 𝑦 ∈ ℂ ) |
| 8 | 7 | imcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ℑ ‘ 𝑦 ) ∈ ℝ ) |
| 9 | 8 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ℑ ‘ 𝑦 ) ∈ ℂ ) |
| 10 | eldifn | ⊢ ( 𝑦 ∈ ( ℂ ∖ ℝ ) → ¬ 𝑦 ∈ ℝ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ¬ 𝑦 ∈ ℝ ) |
| 12 | reim0b | ⊢ ( 𝑦 ∈ ℂ → ( 𝑦 ∈ ℝ ↔ ( ℑ ‘ 𝑦 ) = 0 ) ) | |
| 13 | 7 12 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( 𝑦 ∈ ℝ ↔ ( ℑ ‘ 𝑦 ) = 0 ) ) |
| 14 | 13 | necon3bbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ¬ 𝑦 ∈ ℝ ↔ ( ℑ ‘ 𝑦 ) ≠ 0 ) ) |
| 15 | 11 14 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ℑ ‘ 𝑦 ) ≠ 0 ) |
| 16 | 9 15 | absrpcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( abs ‘ ( ℑ ‘ 𝑦 ) ) ∈ ℝ+ ) |
| 17 | 7 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 18 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) | |
| 19 | 18 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℂ ) |
| 20 | 17 19 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝑦 − 𝑧 ) ∈ ℂ ) |
| 21 | absimle | ⊢ ( ( 𝑦 − 𝑧 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝑦 − 𝑧 ) ) ) ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝑦 − 𝑧 ) ) ) ≤ ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 23 | 17 19 | imsubd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ ( 𝑦 − 𝑧 ) ) = ( ( ℑ ‘ 𝑦 ) − ( ℑ ‘ 𝑧 ) ) ) |
| 24 | reim0 | ⊢ ( 𝑧 ∈ ℝ → ( ℑ ‘ 𝑧 ) = 0 ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ 𝑧 ) = 0 ) |
| 26 | 25 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ℑ ‘ 𝑦 ) − ( ℑ ‘ 𝑧 ) ) = ( ( ℑ ‘ 𝑦 ) − 0 ) ) |
| 27 | 9 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) ∈ ℂ ) |
| 28 | 27 | subid1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ℑ ‘ 𝑦 ) − 0 ) = ( ℑ ‘ 𝑦 ) ) |
| 29 | 23 26 28 | 3eqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) = ( ℑ ‘ ( 𝑦 − 𝑧 ) ) ) |
| 30 | 29 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑦 ) ) = ( abs ‘ ( ℑ ‘ ( 𝑦 − 𝑧 ) ) ) ) |
| 31 | 19 17 | abssubd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 32 | 22 30 31 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 33 | 1 2 5 16 32 3 | rlimcld2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |