This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidss.g | ⊢ 𝑀 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) | |
| ringidss.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| ringidss.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | ringidss | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 1 = ( 0g ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidss.g | ⊢ 𝑀 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) | |
| 2 | ringidss.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | ringidss.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 7 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 1 ∈ 𝐴 ) | |
| 8 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 9 | 8 2 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 10 | 1 9 | ressbas2 | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( Base ‘ 𝑀 ) ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 𝐴 = ( Base ‘ 𝑀 ) ) |
| 12 | 7 11 | eleqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 1 ∈ ( Base ‘ 𝑀 ) ) |
| 13 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) | |
| 14 | 11 13 | eqsstrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → ( Base ‘ 𝑀 ) ⊆ 𝐵 ) |
| 15 | 14 | sselda | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → 𝑦 ∈ 𝐵 ) |
| 16 | fvex | ⊢ ( Base ‘ 𝑀 ) ∈ V | |
| 17 | 11 16 | eqeltrdi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 𝐴 ∈ V ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | 8 18 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 20 | 1 19 | ressplusg | ⊢ ( 𝐴 ∈ V → ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) ) |
| 21 | 17 20 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) ) |
| 23 | 22 | oveqd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 24 | 2 18 3 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 25 | 24 | 3ad2antl1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 26 | 23 25 | eqtr3d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 1 ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
| 27 | 15 26 | syldan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 1 ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
| 28 | 22 | oveqd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( .r ‘ 𝑅 ) 1 ) = ( 𝑦 ( +g ‘ 𝑀 ) 1 ) ) |
| 29 | 2 18 3 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( .r ‘ 𝑅 ) 1 ) = 𝑦 ) |
| 30 | 29 | 3ad2antl1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( .r ‘ 𝑅 ) 1 ) = 𝑦 ) |
| 31 | 28 30 | eqtr3d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑀 ) 1 ) = 𝑦 ) |
| 32 | 15 31 | syldan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 1 ) = 𝑦 ) |
| 33 | 4 5 6 12 27 32 | ismgmid2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 1 = ( 0g ‘ 𝑀 ) ) |