This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidss.g | |- M = ( ( mulGrp ` R ) |`s A ) |
|
| ringidss.b | |- B = ( Base ` R ) |
||
| ringidss.u | |- .1. = ( 1r ` R ) |
||
| Assertion | ringidss | |- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> .1. = ( 0g ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidss.g | |- M = ( ( mulGrp ` R ) |`s A ) |
|
| 2 | ringidss.b | |- B = ( Base ` R ) |
|
| 3 | ringidss.u | |- .1. = ( 1r ` R ) |
|
| 4 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 5 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 6 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 7 | simp3 | |- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> .1. e. A ) |
|
| 8 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 9 | 8 2 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 10 | 1 9 | ressbas2 | |- ( A C_ B -> A = ( Base ` M ) ) |
| 11 | 10 | 3ad2ant2 | |- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> A = ( Base ` M ) ) |
| 12 | 7 11 | eleqtrd | |- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> .1. e. ( Base ` M ) ) |
| 13 | simp2 | |- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> A C_ B ) |
|
| 14 | 11 13 | eqsstrrd | |- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> ( Base ` M ) C_ B ) |
| 15 | 14 | sselda | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. ( Base ` M ) ) -> y e. B ) |
| 16 | fvex | |- ( Base ` M ) e. _V |
|
| 17 | 11 16 | eqeltrdi | |- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> A e. _V ) |
| 18 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 19 | 8 18 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 20 | 1 19 | ressplusg | |- ( A e. _V -> ( .r ` R ) = ( +g ` M ) ) |
| 21 | 17 20 | syl | |- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> ( .r ` R ) = ( +g ` M ) ) |
| 22 | 21 | adantr | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( .r ` R ) = ( +g ` M ) ) |
| 23 | 22 | oveqd | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( .1. ( .r ` R ) y ) = ( .1. ( +g ` M ) y ) ) |
| 24 | 2 18 3 | ringlidm | |- ( ( R e. Ring /\ y e. B ) -> ( .1. ( .r ` R ) y ) = y ) |
| 25 | 24 | 3ad2antl1 | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( .1. ( .r ` R ) y ) = y ) |
| 26 | 23 25 | eqtr3d | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( .1. ( +g ` M ) y ) = y ) |
| 27 | 15 26 | syldan | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. ( Base ` M ) ) -> ( .1. ( +g ` M ) y ) = y ) |
| 28 | 22 | oveqd | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( y ( .r ` R ) .1. ) = ( y ( +g ` M ) .1. ) ) |
| 29 | 2 18 3 | ringridm | |- ( ( R e. Ring /\ y e. B ) -> ( y ( .r ` R ) .1. ) = y ) |
| 30 | 29 | 3ad2antl1 | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( y ( .r ` R ) .1. ) = y ) |
| 31 | 28 30 | eqtr3d | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( y ( +g ` M ) .1. ) = y ) |
| 32 | 15 31 | syldan | |- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. ( Base ` M ) ) -> ( y ( +g ` M ) .1. ) = y ) |
| 33 | 4 5 6 12 27 32 | ismgmid2 | |- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> .1. = ( 0g ` M ) ) |