This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for rhmsubcrngc . (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsubcrngc.c | |- C = ( RngCat ` U ) |
|
| rhmsubcrngc.u | |- ( ph -> U e. V ) |
||
| rhmsubcrngc.b | |- ( ph -> B = ( Ring i^i U ) ) |
||
| rhmsubcrngc.h | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
||
| Assertion | rhmsubcrngclem1 | |- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | |- C = ( RngCat ` U ) |
|
| 2 | rhmsubcrngc.u | |- ( ph -> U e. V ) |
|
| 3 | rhmsubcrngc.b | |- ( ph -> B = ( Ring i^i U ) ) |
|
| 4 | rhmsubcrngc.h | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
|
| 5 | 3 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( Ring i^i U ) ) ) |
| 6 | elin | |- ( x e. ( Ring i^i U ) <-> ( x e. Ring /\ x e. U ) ) |
|
| 7 | 6 | simplbi | |- ( x e. ( Ring i^i U ) -> x e. Ring ) |
| 8 | 5 7 | biimtrdi | |- ( ph -> ( x e. B -> x e. Ring ) ) |
| 9 | 8 | imp | |- ( ( ph /\ x e. B ) -> x e. Ring ) |
| 10 | eqid | |- ( Base ` x ) = ( Base ` x ) |
|
| 11 | 10 | idrhm | |- ( x e. Ring -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) ) |
| 12 | 9 11 | syl | |- ( ( ph /\ x e. B ) -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) ) |
| 13 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 14 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 15 | 2 | adantr | |- ( ( ph /\ x e. B ) -> U e. V ) |
| 16 | ringrng | |- ( x e. Ring -> x e. Rng ) |
|
| 17 | 16 | anim2i | |- ( ( x e. U /\ x e. Ring ) -> ( x e. U /\ x e. Rng ) ) |
| 18 | 17 | ancoms | |- ( ( x e. Ring /\ x e. U ) -> ( x e. U /\ x e. Rng ) ) |
| 19 | 6 18 | sylbi | |- ( x e. ( Ring i^i U ) -> ( x e. U /\ x e. Rng ) ) |
| 20 | 19 | adantl | |- ( ( ph /\ x e. ( Ring i^i U ) ) -> ( x e. U /\ x e. Rng ) ) |
| 21 | elin | |- ( x e. ( U i^i Rng ) <-> ( x e. U /\ x e. Rng ) ) |
|
| 22 | 20 21 | sylibr | |- ( ( ph /\ x e. ( Ring i^i U ) ) -> x e. ( U i^i Rng ) ) |
| 23 | 1 13 2 | rngcbas | |- ( ph -> ( Base ` C ) = ( U i^i Rng ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ x e. ( Ring i^i U ) ) -> ( Base ` C ) = ( U i^i Rng ) ) |
| 25 | 22 24 | eleqtrrd | |- ( ( ph /\ x e. ( Ring i^i U ) ) -> x e. ( Base ` C ) ) |
| 26 | 25 | ex | |- ( ph -> ( x e. ( Ring i^i U ) -> x e. ( Base ` C ) ) ) |
| 27 | 5 26 | sylbid | |- ( ph -> ( x e. B -> x e. ( Base ` C ) ) ) |
| 28 | 27 | imp | |- ( ( ph /\ x e. B ) -> x e. ( Base ` C ) ) |
| 29 | 1 13 14 15 28 10 | rngcid | |- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) = ( _I |` ( Base ` x ) ) ) |
| 30 | 4 | oveqdr | |- ( ( ph /\ x e. B ) -> ( x H x ) = ( x ( RingHom |` ( B X. B ) ) x ) ) |
| 31 | eqid | |- ( RingCat ` U ) = ( RingCat ` U ) |
|
| 32 | eqid | |- ( Base ` ( RingCat ` U ) ) = ( Base ` ( RingCat ` U ) ) |
|
| 33 | eqid | |- ( Hom ` ( RingCat ` U ) ) = ( Hom ` ( RingCat ` U ) ) |
|
| 34 | 31 32 2 33 | ringchomfval | |- ( ph -> ( Hom ` ( RingCat ` U ) ) = ( RingHom |` ( ( Base ` ( RingCat ` U ) ) X. ( Base ` ( RingCat ` U ) ) ) ) ) |
| 35 | 31 32 2 | ringcbas | |- ( ph -> ( Base ` ( RingCat ` U ) ) = ( U i^i Ring ) ) |
| 36 | incom | |- ( Ring i^i U ) = ( U i^i Ring ) |
|
| 37 | 3 36 | eqtrdi | |- ( ph -> B = ( U i^i Ring ) ) |
| 38 | 37 | eqcomd | |- ( ph -> ( U i^i Ring ) = B ) |
| 39 | 35 38 | eqtrd | |- ( ph -> ( Base ` ( RingCat ` U ) ) = B ) |
| 40 | 39 | sqxpeqd | |- ( ph -> ( ( Base ` ( RingCat ` U ) ) X. ( Base ` ( RingCat ` U ) ) ) = ( B X. B ) ) |
| 41 | 40 | reseq2d | |- ( ph -> ( RingHom |` ( ( Base ` ( RingCat ` U ) ) X. ( Base ` ( RingCat ` U ) ) ) ) = ( RingHom |` ( B X. B ) ) ) |
| 42 | 34 41 | eqtrd | |- ( ph -> ( Hom ` ( RingCat ` U ) ) = ( RingHom |` ( B X. B ) ) ) |
| 43 | 42 | adantr | |- ( ( ph /\ x e. B ) -> ( Hom ` ( RingCat ` U ) ) = ( RingHom |` ( B X. B ) ) ) |
| 44 | 43 | eqcomd | |- ( ( ph /\ x e. B ) -> ( RingHom |` ( B X. B ) ) = ( Hom ` ( RingCat ` U ) ) ) |
| 45 | 44 | oveqd | |- ( ( ph /\ x e. B ) -> ( x ( RingHom |` ( B X. B ) ) x ) = ( x ( Hom ` ( RingCat ` U ) ) x ) ) |
| 46 | 37 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( U i^i Ring ) ) ) |
| 47 | 46 | biimpa | |- ( ( ph /\ x e. B ) -> x e. ( U i^i Ring ) ) |
| 48 | 35 | adantr | |- ( ( ph /\ x e. B ) -> ( Base ` ( RingCat ` U ) ) = ( U i^i Ring ) ) |
| 49 | 47 48 | eleqtrrd | |- ( ( ph /\ x e. B ) -> x e. ( Base ` ( RingCat ` U ) ) ) |
| 50 | 31 32 15 33 49 49 | ringchom | |- ( ( ph /\ x e. B ) -> ( x ( Hom ` ( RingCat ` U ) ) x ) = ( x RingHom x ) ) |
| 51 | 30 45 50 | 3eqtrd | |- ( ( ph /\ x e. B ) -> ( x H x ) = ( x RingHom x ) ) |
| 52 | 12 29 51 | 3eltr4d | |- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |