This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmisrnghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 2 | ringrng | ⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Rng ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ) |
| 4 | mhmismgmhm | ⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) | |
| 5 | 4 | anim2i | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) |
| 6 | 3 5 | anim12i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) → ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 7 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 9 | 7 8 | isrhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 10 | 7 8 | isrnghmmul | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 11 | 6 9 10 | 3imtr4i | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) |