This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmimasubrng | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubRng ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) | |
| 2 | subrngsubg | ⊢ ( 𝑋 ∈ ( SubRng ‘ 𝑀 ) → 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) | |
| 3 | ghmima | ⊢ ( ( 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ) |
| 5 | eqid | ⊢ ( mulGrp ‘ 𝑀 ) = ( mulGrp ‘ 𝑀 ) | |
| 6 | eqid | ⊢ ( mulGrp ‘ 𝑁 ) = ( mulGrp ‘ 𝑁 ) | |
| 7 | 5 6 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ) |
| 8 | simpl | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 10 | 5 9 | mgpbas | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( mulGrp ‘ 𝑀 ) ) |
| 11 | 10 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ 𝑀 ) ) = ( Base ‘ 𝑀 ) |
| 12 | 11 | subrngss | ⊢ ( 𝑋 ∈ ( SubRng ‘ 𝑀 ) → 𝑋 ⊆ ( Base ‘ ( mulGrp ‘ 𝑀 ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → 𝑋 ⊆ ( Base ‘ ( mulGrp ‘ 𝑀 ) ) ) |
| 14 | eqidd | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( +g ‘ ( mulGrp ‘ 𝑀 ) ) = ( +g ‘ ( mulGrp ‘ 𝑀 ) ) ) | |
| 15 | eqidd | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( +g ‘ ( mulGrp ‘ 𝑁 ) ) = ( +g ‘ ( mulGrp ‘ 𝑁 ) ) ) | |
| 16 | eqid | ⊢ ( .r ‘ 𝑀 ) = ( .r ‘ 𝑀 ) | |
| 17 | 5 16 | mgpplusg | ⊢ ( .r ‘ 𝑀 ) = ( +g ‘ ( mulGrp ‘ 𝑀 ) ) |
| 18 | 17 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ 𝑀 ) ) = ( .r ‘ 𝑀 ) |
| 19 | 18 | subrngmcl | ⊢ ( ( 𝑋 ∈ ( SubRng ‘ 𝑀 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑥 ) ∈ 𝑋 ) |
| 20 | 19 | 3adant1l | ⊢ ( ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑥 ) ∈ 𝑋 ) |
| 21 | 8 13 14 15 20 | mhmimalem | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 22 | eqid | ⊢ ( .r ‘ 𝑁 ) = ( .r ‘ 𝑁 ) | |
| 23 | 6 22 | mgpplusg | ⊢ ( .r ‘ 𝑁 ) = ( +g ‘ ( mulGrp ‘ 𝑁 ) ) |
| 24 | 23 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ 𝑁 ) ) = ( .r ‘ 𝑁 ) |
| 25 | 24 | oveqi | ⊢ ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) |
| 26 | 25 | eleq1i | ⊢ ( ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 27 | 26 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 28 | 21 27 | sylib | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 29 | 7 28 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 30 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Ring ) | |
| 31 | ringrng | ⊢ ( 𝑁 ∈ Ring → 𝑁 ∈ Rng ) | |
| 32 | 30 31 | syl | ⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Rng ) |
| 33 | 32 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → 𝑁 ∈ Rng ) |
| 34 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 35 | 34 22 | issubrng2 | ⊢ ( 𝑁 ∈ Rng → ( ( 𝐹 “ 𝑋 ) ∈ ( SubRng ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) ) |
| 36 | 33 35 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( ( 𝐹 “ 𝑋 ) ∈ ( SubRng ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) ) |
| 37 | 4 29 36 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubRng ‘ 𝑁 ) ) |