This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mhmima and similar theorems, formerly part of proof for mhmima . (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmimalem.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) | |
| mhmimalem.s | ⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) | ||
| mhmimalem.a | ⊢ ( 𝜑 → ⊕ = ( +g ‘ 𝑀 ) ) | ||
| mhmimalem.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑁 ) ) | ||
| mhmimalem.c | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ⊕ 𝑥 ) ∈ 𝑋 ) | ||
| Assertion | mhmimalem | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmimalem.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) | |
| 2 | mhmimalem.s | ⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) | |
| 3 | mhmimalem.a | ⊢ ( 𝜑 → ⊕ = ( +g ‘ 𝑀 ) ) | |
| 4 | mhmimalem.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑁 ) ) | |
| 5 | mhmimalem.c | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ⊕ 𝑥 ) ∈ 𝑋 ) | |
| 6 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 9 | 7 8 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ ( Base ‘ 𝑀 ) ) |
| 10 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 11 | 7 10 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 13 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) | |
| 15 | 12 13 14 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 16 | 6 9 11 15 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 | 3 | oveqd | ⊢ ( 𝜑 → ( 𝑧 ⊕ 𝑥 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑧 ⊕ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 19 | 4 | oveqd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 | 18 19 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑧 ⊕ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑧 ⊕ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 22 | 16 21 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ⊕ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ) |
| 23 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 24 | 12 23 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 25 | 1 24 | syl | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 26 | 25 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 28 | 5 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑧 ⊕ 𝑥 ) ∈ 𝑋 ) |
| 29 | fnfvima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ∧ ( 𝑧 ⊕ 𝑥 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑧 ⊕ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) | |
| 30 | 27 7 28 29 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ⊕ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 31 | 22 30 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 32 | 31 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 34 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 36 | 35 | ralima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 37 | 26 2 36 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) + ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 39 | 33 38 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 40 | 39 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 41 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 + 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ) | |
| 42 | 41 | eleq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑥 + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 43 | 42 | ralbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 44 | 43 | ralima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 45 | 26 2 44 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 46 | 40 45 | mpbird | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 + 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |