This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real B , is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rfcnpre2.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| rfcnpre2.2 | ⊢ Ⅎ 𝑥 𝐹 | ||
| rfcnpre2.3 | ⊢ Ⅎ 𝑥 𝜑 | ||
| rfcnpre2.4 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| rfcnpre2.5 | ⊢ 𝑋 = ∪ 𝐽 | ||
| rfcnpre2.6 | ⊢ 𝐴 = { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } | ||
| rfcnpre2.7 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| rfcnpre2.8 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | rfcnpre2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre2.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| 2 | rfcnpre2.2 | ⊢ Ⅎ 𝑥 𝐹 | |
| 3 | rfcnpre2.3 | ⊢ Ⅎ 𝑥 𝜑 | |
| 4 | rfcnpre2.4 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 5 | rfcnpre2.5 | ⊢ 𝑋 = ∪ 𝐽 | |
| 6 | rfcnpre2.6 | ⊢ 𝐴 = { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } | |
| 7 | rfcnpre2.7 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 8 | rfcnpre2.8 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 9 | 2 | nfcnv | ⊢ Ⅎ 𝑥 ◡ 𝐹 |
| 10 | nfcv | ⊢ Ⅎ 𝑥 -∞ | |
| 11 | nfcv | ⊢ Ⅎ 𝑥 (,) | |
| 12 | 10 11 1 | nfov | ⊢ Ⅎ 𝑥 ( -∞ (,) 𝐵 ) |
| 13 | 9 12 | nfima | ⊢ Ⅎ 𝑥 ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) |
| 14 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } | |
| 15 | eqid | ⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn 𝐾 ) | |
| 16 | 4 5 15 8 | fcnre | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 17 | 16 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 18 | elioomnf | ⊢ ( 𝐵 ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) ) | |
| 19 | 7 18 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) ) |
| 20 | 19 | baibd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) |
| 21 | 17 20 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) |
| 22 | 21 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) ) |
| 23 | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ → 𝐹 Fn 𝑋 ) | |
| 24 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ) ) ) | |
| 25 | 16 23 24 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ) ) ) |
| 26 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) | |
| 27 | 26 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) ) |
| 28 | 22 25 27 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ↔ 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) ) |
| 29 | 3 13 14 28 | eqrd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) = { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) |
| 30 | 29 6 | eqtr4di | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) = 𝐴 ) |
| 31 | iooretop | ⊢ ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) | |
| 32 | 31 | a1i | ⊢ ( 𝜑 → ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
| 33 | 32 4 | eleqtrrdi | ⊢ ( 𝜑 → ( -∞ (,) 𝐵 ) ∈ 𝐾 ) |
| 34 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( -∞ (,) 𝐵 ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ 𝐽 ) | |
| 35 | 8 33 34 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ 𝐽 ) |
| 36 | 30 35 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |