This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcnre.1 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| fcnre.3 | ⊢ 𝑇 = ∪ 𝐽 | ||
| sfcnre.5 | ⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) | ||
| fcnre.6 | ⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) | ||
| Assertion | fcnre | ⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcnre.1 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 2 | fcnre.3 | ⊢ 𝑇 = ∪ 𝐽 | |
| 3 | sfcnre.5 | ⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) | |
| 4 | fcnre.6 | ⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) | |
| 5 | 4 3 | eleqtrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 6 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 8 | 2 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑇 ) ) |
| 9 | 7 8 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑇 ) ) |
| 10 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 11 | 1 10 | eqeltri | ⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℝ ) ) |
| 13 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑇 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑇 ⟶ ℝ ) | |
| 14 | 9 12 5 13 | syl3anc | ⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |