This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real B , is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rfcnpre2.1 | |- F/_ x B |
|
| rfcnpre2.2 | |- F/_ x F |
||
| rfcnpre2.3 | |- F/ x ph |
||
| rfcnpre2.4 | |- K = ( topGen ` ran (,) ) |
||
| rfcnpre2.5 | |- X = U. J |
||
| rfcnpre2.6 | |- A = { x e. X | ( F ` x ) < B } |
||
| rfcnpre2.7 | |- ( ph -> B e. RR* ) |
||
| rfcnpre2.8 | |- ( ph -> F e. ( J Cn K ) ) |
||
| Assertion | rfcnpre2 | |- ( ph -> A e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre2.1 | |- F/_ x B |
|
| 2 | rfcnpre2.2 | |- F/_ x F |
|
| 3 | rfcnpre2.3 | |- F/ x ph |
|
| 4 | rfcnpre2.4 | |- K = ( topGen ` ran (,) ) |
|
| 5 | rfcnpre2.5 | |- X = U. J |
|
| 6 | rfcnpre2.6 | |- A = { x e. X | ( F ` x ) < B } |
|
| 7 | rfcnpre2.7 | |- ( ph -> B e. RR* ) |
|
| 8 | rfcnpre2.8 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 9 | 2 | nfcnv | |- F/_ x `' F |
| 10 | nfcv | |- F/_ x -oo |
|
| 11 | nfcv | |- F/_ x (,) |
|
| 12 | 10 11 1 | nfov | |- F/_ x ( -oo (,) B ) |
| 13 | 9 12 | nfima | |- F/_ x ( `' F " ( -oo (,) B ) ) |
| 14 | nfrab1 | |- F/_ x { x e. X | ( F ` x ) < B } |
|
| 15 | eqid | |- ( J Cn K ) = ( J Cn K ) |
|
| 16 | 4 5 15 8 | fcnre | |- ( ph -> F : X --> RR ) |
| 17 | 16 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. RR ) |
| 18 | elioomnf | |- ( B e. RR* -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < B ) ) ) |
|
| 19 | 7 18 | syl | |- ( ph -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < B ) ) ) |
| 20 | 19 | baibd | |- ( ( ph /\ ( F ` x ) e. RR ) -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( F ` x ) < B ) ) |
| 21 | 17 20 | syldan | |- ( ( ph /\ x e. X ) -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( F ` x ) < B ) ) |
| 22 | 21 | pm5.32da | |- ( ph -> ( ( x e. X /\ ( F ` x ) e. ( -oo (,) B ) ) <-> ( x e. X /\ ( F ` x ) < B ) ) ) |
| 23 | ffn | |- ( F : X --> RR -> F Fn X ) |
|
| 24 | elpreima | |- ( F Fn X -> ( x e. ( `' F " ( -oo (,) B ) ) <-> ( x e. X /\ ( F ` x ) e. ( -oo (,) B ) ) ) ) |
|
| 25 | 16 23 24 | 3syl | |- ( ph -> ( x e. ( `' F " ( -oo (,) B ) ) <-> ( x e. X /\ ( F ` x ) e. ( -oo (,) B ) ) ) ) |
| 26 | rabid | |- ( x e. { x e. X | ( F ` x ) < B } <-> ( x e. X /\ ( F ` x ) < B ) ) |
|
| 27 | 26 | a1i | |- ( ph -> ( x e. { x e. X | ( F ` x ) < B } <-> ( x e. X /\ ( F ` x ) < B ) ) ) |
| 28 | 22 25 27 | 3bitr4d | |- ( ph -> ( x e. ( `' F " ( -oo (,) B ) ) <-> x e. { x e. X | ( F ` x ) < B } ) ) |
| 29 | 3 13 14 28 | eqrd | |- ( ph -> ( `' F " ( -oo (,) B ) ) = { x e. X | ( F ` x ) < B } ) |
| 30 | 29 6 | eqtr4di | |- ( ph -> ( `' F " ( -oo (,) B ) ) = A ) |
| 31 | iooretop | |- ( -oo (,) B ) e. ( topGen ` ran (,) ) |
|
| 32 | 31 | a1i | |- ( ph -> ( -oo (,) B ) e. ( topGen ` ran (,) ) ) |
| 33 | 32 4 | eleqtrrdi | |- ( ph -> ( -oo (,) B ) e. K ) |
| 34 | cnima | |- ( ( F e. ( J Cn K ) /\ ( -oo (,) B ) e. K ) -> ( `' F " ( -oo (,) B ) ) e. J ) |
|
| 35 | 8 33 34 | syl2anc | |- ( ph -> ( `' F " ( -oo (,) B ) ) e. J ) |
| 36 | 30 35 | eqeltrrd | |- ( ph -> A e. J ) |