This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0rest | ⊢ ( ∅ ↾t 𝐴 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | restval | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( ∅ ↾t 𝐴 ) = ran ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ V → ( ∅ ↾t 𝐴 ) = ran ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 4 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) = ∅ | |
| 5 | 4 | rneqi | ⊢ ran ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) = ran ∅ |
| 6 | rn0 | ⊢ ran ∅ = ∅ | |
| 7 | 5 6 | eqtri | ⊢ ran ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) = ∅ |
| 8 | 3 7 | eqtrdi | ⊢ ( 𝐴 ∈ V → ( ∅ ↾t 𝐴 ) = ∅ ) |
| 9 | relxp | ⊢ Rel ( V × V ) | |
| 10 | restfn | ⊢ ↾t Fn ( V × V ) | |
| 11 | 10 | fndmi | ⊢ dom ↾t = ( V × V ) |
| 12 | 11 | releqi | ⊢ ( Rel dom ↾t ↔ Rel ( V × V ) ) |
| 13 | 9 12 | mpbir | ⊢ Rel dom ↾t |
| 14 | 13 | ovprc2 | ⊢ ( ¬ 𝐴 ∈ V → ( ∅ ↾t 𝐴 ) = ∅ ) |
| 15 | 8 14 | pm2.61i | ⊢ ( ∅ ↾t 𝐴 ) = ∅ |