This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ofeqd.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
| Assertion | ofeqd | ⊢ ( 𝜑 → ∘f 𝑅 = ∘f 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofeqd.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
| 2 | 1 | oveqd | ⊢ ( 𝜑 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) |
| 3 | 2 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 4 | 3 | mpoeq3dv | ⊢ ( 𝜑 → ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 5 | df-of | ⊢ ∘f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 6 | df-of | ⊢ ∘f 𝑆 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 7 | 4 5 6 | 3eqtr4g | ⊢ ( 𝜑 → ∘f 𝑅 = ∘f 𝑆 ) |