This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resscdrg.1 | ⊢ 𝐹 = ( ℂfld ↾s 𝐾 ) | |
| Assertion | resscdrg | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ℝ ⊆ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resscdrg.1 | ⊢ 𝐹 = ( ℂfld ↾s 𝐾 ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | qssre | ⊢ ℚ ⊆ ℝ | |
| 6 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 7 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 8 | 6 7 | restcls | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ℝ ⊆ ℂ ∧ ℚ ⊆ ℝ ) → ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ∩ ℝ ) ) |
| 9 | 3 4 5 8 | mp3an | ⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ∩ ℝ ) |
| 10 | qdensere | ⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ | |
| 11 | 9 10 | eqtr3i | ⊢ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ∩ ℝ ) = ℝ |
| 12 | sseqin2 | ⊢ ( ℝ ⊆ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ↔ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ∩ ℝ ) = ℝ ) | |
| 13 | 11 12 | mpbir | ⊢ ℝ ⊆ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) |
| 14 | simp3 | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐹 ∈ CMetSp ) | |
| 15 | cncms | ⊢ ℂfld ∈ CMetSp | |
| 16 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 17 | 16 | subrgss | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ⊆ ℂ ) |
| 19 | 1 16 2 | cmsss | ⊢ ( ( ℂfld ∈ CMetSp ∧ 𝐾 ⊆ ℂ ) → ( 𝐹 ∈ CMetSp ↔ 𝐾 ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) |
| 20 | 15 18 19 | sylancr | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ( 𝐹 ∈ CMetSp ↔ 𝐾 ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) |
| 21 | 14 20 | mpbid | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 22 | 1 | eleq1i | ⊢ ( 𝐹 ∈ DivRing ↔ ( ℂfld ↾s 𝐾 ) ∈ DivRing ) |
| 23 | qsssubdrg | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ) → ℚ ⊆ 𝐾 ) | |
| 24 | 22 23 | sylan2b | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ) → ℚ ⊆ 𝐾 ) |
| 25 | 24 | 3adant3 | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ℚ ⊆ 𝐾 ) |
| 26 | 6 | clsss2 | ⊢ ( ( 𝐾 ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ℚ ⊆ 𝐾 ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ⊆ 𝐾 ) |
| 27 | 21 25 26 | syl2anc | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ⊆ 𝐾 ) |
| 28 | 13 27 | sstrid | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ℝ ⊆ 𝐾 ) |