This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resscdrg.1 | |- F = ( CCfld |`s K ) |
|
| Assertion | resscdrg | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> RR C_ K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resscdrg.1 | |- F = ( CCfld |`s K ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 4 | ax-resscn | |- RR C_ CC |
|
| 5 | qssre | |- QQ C_ RR |
|
| 6 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 7 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 8 | 6 7 | restcls | |- ( ( ( TopOpen ` CCfld ) e. Top /\ RR C_ CC /\ QQ C_ RR ) -> ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) ) |
| 9 | 3 4 5 8 | mp3an | |- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) |
| 10 | qdensere | |- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR |
|
| 11 | 9 10 | eqtr3i | |- ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) = RR |
| 12 | sseqin2 | |- ( RR C_ ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) <-> ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) = RR ) |
|
| 13 | 11 12 | mpbir | |- RR C_ ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) |
| 14 | simp3 | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> F e. CMetSp ) |
|
| 15 | cncms | |- CCfld e. CMetSp |
|
| 16 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 17 | 16 | subrgss | |- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
| 18 | 17 | 3ad2ant1 | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K C_ CC ) |
| 19 | 1 16 2 | cmsss | |- ( ( CCfld e. CMetSp /\ K C_ CC ) -> ( F e. CMetSp <-> K e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) |
| 20 | 15 18 19 | sylancr | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> ( F e. CMetSp <-> K e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) |
| 21 | 14 20 | mpbid | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 22 | 1 | eleq1i | |- ( F e. DivRing <-> ( CCfld |`s K ) e. DivRing ) |
| 23 | qsssubdrg | |- ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing ) -> QQ C_ K ) |
|
| 24 | 22 23 | sylan2b | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing ) -> QQ C_ K ) |
| 25 | 24 | 3adant3 | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> QQ C_ K ) |
| 26 | 6 | clsss2 | |- ( ( K e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ QQ C_ K ) -> ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) C_ K ) |
| 27 | 21 25 26 | syl2anc | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) C_ K ) |
| 28 | 13 27 | sstrid | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> RR C_ K ) |