This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the codomain of a homomorphism. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmgmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| Assertion | resmgmhm2b | ⊢ ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmgmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| 2 | mgmhmrcl | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) | |
| 3 | 2 | simpld | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝑆 ∈ Mgm ) |
| 4 | 3 | adantl | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝑆 ∈ Mgm ) |
| 5 | 1 | submgmmgm | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) → 𝑈 ∈ Mgm ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝑈 ∈ Mgm ) |
| 7 | 4 6 | jca | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 10 | 8 9 | mgmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 12 | 11 | ffnd | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 13 | simplr | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ran 𝐹 ⊆ 𝑋 ) | |
| 14 | df-f | ⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋 ↔ ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ ran 𝐹 ⊆ 𝑋 ) ) | |
| 15 | 12 13 14 | sylanbrc | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋 ) |
| 16 | 1 | submgmbas | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 18 | 17 | feq3d | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋 ↔ 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) ) |
| 19 | 15 18 | mpbid | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 20 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 21 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 22 | 8 20 21 | mgmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 23 | 22 | 3expb | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 24 | 23 | adantll | ⊢ ( ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 | 1 21 | ressplusg | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) → ( +g ‘ 𝑇 ) = ( +g ‘ 𝑈 ) ) |
| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( +g ‘ 𝑇 ) = ( +g ‘ 𝑈 ) ) |
| 27 | 26 | oveqd | ⊢ ( ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 | 24 27 | eqtrd | ⊢ ( ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 | 28 | ralrimivva | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 30 | 19 29 | jca | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 32 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 33 | 8 31 20 32 | ismgmhm | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm ) ∧ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 34 | 7 30 33 | sylanbrc | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ) |
| 35 | 1 | resmgmhm2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) |
| 36 | 35 | ancoms | ⊢ ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ) → 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) |
| 37 | 36 | adantlr | ⊢ ( ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ) → 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) |
| 38 | 34 37 | impbida | ⊢ ( ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ) ) |